Criteria

Text:
Display:

Results

Viewing 151 to 180 of 16239
2004-10-26
Technical Paper
2004-01-2668
Hannes Hick, Klaus Denkmayr, Michael Aschaber
The AVL Load Matrix is a systematic approach to optimize durability and reliability test programs. It is based on component-specific test acceleration factors and uses damage models as well as statistics. Using the Load Matrix approach helps to achieve complete test programs while avoiding unrealistic over-testing. The paper describes the Load Matrix concept and structure as well as the process of setting up the Load Matrix for a system or component. Examples are provided on damage models, and the procedure to estimate the acceleration factors is discussed.
2004-10-26
Technical Paper
2004-01-2667
Timothy J. Milburn
Product development and manufacturing organizations are moving from the traditional, multiple and serial design-build-test cycle approach to an integrated, concurrent task and systems engineering paradigm, led by upfront planning, analysis and simulation, supported by credible product test data. This “paradigm shift” includes a move from a predominance of physical testing for product prototype validation to simulation-led problem solving and performance validation, using Computer Aided Engineering, and Design (CAE and CAD) tools. Supported by use of Computer Aided Testing (CAT), physical testing capabilities have comparably grown in accuracy and application range. The role of testing is moving from mostly pre-production validation to include support of product design decisions throughout the development process, including upfront planning.
2004-10-26
Technical Paper
2004-01-2656
Luciano Caletti, Jonny Carlos da Silva
This paper describes the development of an expert system project to design hydraulic power supply units, known as PHIDR, which is considered a natural expansion of KEOHPS Hydraulic Module. The expert system aims to support the designer in the process of selecting, in an efficient manner, the most adequate power supply unit based on design requirements and best practice rules. The text presents a description of the prototype system as well as its development process, including knowledge acquisition, representation, implementation and validation. Future issues on system expansion are also discussed.
2004-10-26
Technical Paper
2004-01-2705
Jeffrey R. Stokes, Paul W. Claar
Data envelopment analysis (DEA) is used to examine the efficiency of 74 front wheel assist agricultural tractors from three U.S. manufacturers. The outputs of drawbar horsepower and power takeoff horsepower are modeled in a constant returns-to-scale framework using three productive performance inputs (fuel consumption, slip, and center of gravity), and one price input, namely, retail tractor price. The results suggest that by and large, John Deere tractors are more DEA efficient than their competitor's tractors. However, competitor's tractors that are DEA efficient are most often the top benchmarks for DEA inefficient tractors. These results suggest that while John Deere appears to produce many quality tractors, competitor's like CNH and AGCO produce a few tractors that may be of even higher quality.
2004-10-26
Technical Paper
2004-01-2655
Robert Rahmfeld, Monika Ivantysynova, Bastian Eggers
This paper deals with the use of a displacement controlled linear actuator for active oscillation damping of off-road machine structure. Aim is the development of system solutions and control concepts for the simultaneous use of displacement controlled (valveless) hydraulic actuators basing on single rod cylinder for the active oscillation damping of off-road machine structure and for the control of the working hydraulics movement. Thereby, the productivity of the machine and the operator comfort will be improved.
2004-10-26
Technical Paper
2004-01-2706
Kenji Kato, Satoshi Machida, Masao Takagi, Keishiro Nishi
1. ABSTRACT The New Kubota Grand L30 Series Compact Tractors are powerful, user-friendly compact tractors that have advanced functions to provide the maximum performance. Many new features such as IntelliPanel enable users to obtain high workability, comfort, and operability. IntelliPanel is an advanced function that displays information on a liquid crystal display to help users' with operation and maintenance. An electronically controlled multi-gear GST (Glide Shift Transmission) enables users to choose gears for 12 travel speeds using one lever, during travel without operating a clutch. An ECU (Electric Control Unit) controls solenoid valves and a proportional reducing valve to allow for smooth gear changes.
2004-10-26
Technical Paper
2004-01-2658
William Wangard, Aleksandra Egelja, Hossam Metwally
A transient, 3-dimensional, continuum CFD model of soot loading and regeneration has been developed for a single channel unit in a diesel particulate filter. The detailed model is used to predict the soot loading, velocity, temperature, and species distributions in both the air channels and porous walls of the filter. The simulation is performed in two phases: loading and regeneration. In the loading phase, soot profiles are estimated for a clean filter using a steady-state simulation. In the second phase, transient regeneration is modeled using a single-step, irreversible heterogeneous mechanism is used to predict the formation of carbon monoxide and carbon dioxide products during the regeneration process, incorporating a fractionization scheme. Reaction rates are predicted via an Arrhenius rate law, but may be tempered due to diffusion-limiting conditions in the porous reaction zone. Simulations are performed with a commercial CFD package and user-defined functions.
2004-10-26
Technical Paper
2004-01-2707
Rosca Radu, Rakosi Edward, Manolache Gheorghe
The paper attempts to determine which traction model best fits with experimental data for a romanian lugged tractor tire. Different models for predicting net traction and traction efficiency for off-road conditions were considered. These models assume different tire-ground pressure distributions (constant, parabolic) over the undertread area and different contact patch length calculations. Experiments were conducted and the results were compared to the theoretical data. Two of the models are the best fit with the experimental data; both models assumed a parabolic pressure distribution over the undertread.
2004-10-26
Technical Paper
2004-01-2739
Saveliy M. Gugel
This article describes the experience of Sanova-Polytech, Inc. (SPI) in the creation, testing, and usage of new Liquid Induction Thermochemical Processes (LINTERPROCESS™) and Liquid Induction Heat Treatment (LINHEAT™) technologies, and in the designing, manufacturing, and employment of new automatic computerized production equipment, which can be of significant advantage to manufacturers of commercial vehicles. Heat treatment and thermochemical processing of various metals play an important role in the global effort to produce stronger, lighter, and more durable machine parts at lower costs. They are widely used in the manufacturing of cars and buses, and farm, construction, industrial, and other machinery.
2004-11-16
Technical Paper
2004-01-3411
Ivan Lima, Geraldo Minoru Kato, Juan Carlos Parrilla
The growing competition of the automotive market makes more and more necessary the reduction of development time and consequently, the increase of the capacity to quickly respond to the launching of the competitors. One of the most costly phases on the vehicle development process is the field durability test, both in function of the number of prototypes employed and the time needed to its execution. More and more diffused, the fatigue life prediction methods have played an important part in the durability analysis via CAE. Nevertheless, in order they can be reliable and really being able to reduce the development time and cost, they need to be provided with load cases that can accurately represent the field durability tests. This work presents a CAE approach used for light trucks in order to get a reasonable understanding of component durability behavior due to payload increase. In general, road load data is not available for a new payload condition.
2004-11-16
Technical Paper
2004-01-3437
Paulo Pedro Kenedi, Leydervan de Souza Xavier, Ricardo A. Amar de Aguiar, Rafael de Oliveira Sampaio, Thiago Fontes Carvalho de Queiroz
In order to resist impact loadings that usually occurs in an off-road circuit an integrated approach of mechanical design is developed to obtain an optimized vehicle suspension. Efforts were made to model a front suspension, type double A of an off-road vehicle Mini-Baja. The focus was stressed in the transmissibility of mechanical forces through front suspension. A simple analytic model was done to esteem the reactions generated at points of linkage of suspension and structure of Mini-Baja, during a transient impact load. Numerical simulation softwares were also used to visualize dynamic behavior of different front suspension configurations. Finally experimental test was done with data acquisition system, with the use of load cells, to generate a reference data to compare analytic and numerical models.
2004-03-08
Technical Paper
2004-01-1648
Xubin Song, Mehdi Ahmadian
This paper presents a parametric study of two semiactive adaptive control algorithms through simulation: the non-model based skyhook control, and the newly developed model-based nonlinear adaptive vibration control. This study includes discussion of suspension model setup, dynamic analysis approach, and controller tuning. The simulation setup is from a heavy-duty truck seat suspension with a magneto-rheological (MR) damper. The dynamic analysis is performed in the time domain using sine sweep excitations without the need to linearize such a nonlinear semiactive system that is studied here. Through simulation, the effectiveness of both control algorithms is demonstrated for vibration isolation. The computation flops of the simulation in the SIMULINK environment are compared, and the adaptability is studied with respect to plant variations and different excitation profiles, both of which come across typically for vehicle suspension systems.
2004-03-08
Technical Paper
2004-01-1768
Wolfram Hohmann
In this paper we will explore how 15 years after being introduced into avionics systems, “by-wire” technologies have entered the automotive world. The use of software within safety-relevant application areas like restraint systems, braking, steering and vehicle dynamics support and control systems, is requiring changes in the processes and methodologies used for embedded software development.
2013-09-08
Technical Paper
2013-24-0110
Max Kofod, Trevor Stephenson
The EU Commission's “Clean Power for Transport” initiative aims to break the EU's dependence on imported oil whilst promoting the use of alternative fuels to reduce greenhouse gas emissions. Among the options considered is the use of liquefied natural gas (LNG) as a substitute for diesel in long haul trucks. It is interesting to ask how the lifecycle greenhouse gas (GHG) emissions of LNG compare with conventional diesel fuel for this application. The LNG available in Europe is mainly imported. This paper considers the “well-to-tank” emissions of LNG from various production routes, including: gas production, treatment and liquefaction, shipping to Europe, terminal, distribution and refuelling operations. “Tank-to-Wheel” emissions are considered for a range of currently-available engine technologies of varying efficiency relative to diesel.
2013-01-09
Technical Paper
2013-26-0015
S. S. Thipse, K. P. Kavathekar, S. D. Rairikar, A. A. Tyagi, N. V. Marathe
A duel fuel diesel engine is a diesel engine fitted with a dual fuel conversion kit to enable use of clean burning alternative fuel like compressed natural gas. Dual fuel engines have number of potential advantages like fuel flexibility, lower emissions, higher compression ratio, better efficiency and easy conversion of existing diesel engines without major hardware modifications. In view of energy depletion and environmental pollution, dual fuel technology has caught attention of researchers as a viable technology keeping in mind the increased availability of fuels like Compresed Natural Gas (CNG). It is an ecological friendly technology due to lower PM and smoke emissions and retains the efficiency of diesel combustion. Traditionally dual fuel technology has been popular for large engines like marine, locomotive and stationery engines. However its use for automotive engines has been limited in the past due to constraints of limited supply of alternative fuels.
2013-01-09
Technical Paper
2013-26-0018
Rajeev Verma, Nikhil Nahar, Zhijun Tang, Benjamin Saltsman
Commercial vehicle operators and governments around the world are looking for ways to cut down on fuel consumption for economic and environmental reasons. Two main factors affecting the fuel consumption of a vehicle are the drive route and the driver behavior. The drive route can be specified by information such as speed limit, road grade, road curvature, traffic etc. The driver behavior, on the other hand, is difficult to classify and can be responsible for as much as 35% variation in fuel consumption. In this work, nearly 600,000 miles of drive data is utilized to identify driving behaviors that significantly affect fuel consumption. Based on this analysis, driving scenarios and related driver behaviors are identified that result in the most efficient vehicle operation. A driver assistance system is presented in this paper that assists the driver in driving more efficiently by issuing scenario specific advice.
2013-01-09
Technical Paper
2013-26-0017
Marcin Rychter
A tachograph which belongs to the group of ORD devices is the oldest recorder (On Board Recording Devices), and the duty of taking it was led into the USA already in 1939. In order to solve all these problems, they led with Directive of Advice No. 2135/98 from 24 September 1998 of the August of 2004 from the beginning of in the area of the European Union, new type of registering setting up in the road transport - digital tachograph. In order to make it impossible to abuse, a complex system of keys was applied cryptological and of certificates, saved in grating and devices, letting for explicit determining entitlements of users and authenticities of data, cards and devices. In spite of using the most modern keys and securing systems, with respect to elements of the system of digital tachographs a lot of modus operandis were observed so that they registered wrong sizes.
2013-01-09
Technical Paper
2013-26-0049
Teuvo Maunula, Arto Viitanen, Toni Kinnunen, Kauko Kanniainen
The emission regulations for mobile applications become stricter in Euro-IV to Euro-VI levels. Carbon monoxide and hydrocarbon can be removed by efficient Diesel Oxidation Catalysts (DOC) but Particulate Matter (PM) and NOx are more demanding requiring the use of active methods (urea-SCR and DPF) which will be world-wide implemented in the 2010's. Durable, coated V-SCR catalysts are based on stabilized raw materials and tailored preparation methods. Coated V2O5/TiO2-WO3 catalysts (ceramic 300/400 cpsi and metallic 500/600 cpsi) were evaluated by laboratory and engine bench experiments. Traditional V-SCR catalysts are durable up to about 600°C and have a high efficiency at 300°C-500°C. SCR activities were tailored to be higher also at 200°C-300°C or 500°C-600°C. The use of thermal stabilizers or the vanadium loading variation enabled the changes in operation window and stability.
2013-01-09
Technical Paper
2013-26-0044
Ashok Patidar, Umashanker Gupta, Nitin Marathe
Assessment of cooling performance in the design stage of vehicle allows a reduction in the number of needed prototypes and reduces the overall design cycle time. Frontend cooling and thermal management play an essential role in the early stages of commercial vehicle design. Sufficient airflow needs to be available for adequate cooling of the under-hood components. The amount of air mass flow depends on the under-hood geometry details, positioning and size of the grilles, fan operation and the positioning of the other components. Thermal performance depends on the selection of heat exchanger. This paper describes the effects of several design actions on engine cooling performance of a commercial vehicle with the help of Computational Fluid Dynamics (CFD) simulation tool Fluent™. Front of vehicle design is captured in detailed FE model, considering front bumper, grille, cabin, cargo and surrounding under-hood and underbody components.
2013-01-09
Technical Paper
2013-26-0043
Vignesh S, Vijay Ram C, Sachin P
Non air-conditioned buses constitute a major portion of public transportation facilities in many countries across the world. Inadequate cabin air circulation is a major cause of passenger discomfort in these buses. The aim of this study is to model the air flow pattern inside the passenger compartment of a bus and to establish the effect of solutions such as roof vents in improving the air circulation. RANS based CFD simulations with Shear Stress Transport (SST) turbulence model have been carried out using a commercial CFD solver. The CFD methodology has been verified by comparing results with experimentally validated LES simulation results available in literature. The vehicle model used in this study was the shell structure of a bus with an overall length of 7 m and a wheel base of 3.9 m. Simulations were carried out for a four vent configuration which showed an increase of 131% in the average in-cabin air velocity over the baseline model without any roof-vents.
2013-01-09
Technical Paper
2013-26-0038
S. R. Nigade, S. S. Dandge, R. S. Mahajan, H. V. Vankudre
Automotive Industry Standard (AIS)-031 specifies the requirement of strength of large passenger vehicles in case of rollover. In India the certificate is granted after the successful completion of rollover test of the vehicle as per AIS-031. Complete vehicle is used for rollover test in which the vehicle is tilted laterally in the ditch of 800 mm. Such tests with complete vehicle are costly and unaffordable to small bus body builders. So according to Annex 2 of AIS-031, manufacture can carryout rollover on body sections of the vehicle. This is an equivalent approval method which is less costly compared to rollover test on complete vehicle. It requires detailed study of superstructure and selection of weakest body sections from the given superstructure of bus, which in turn requires mass and energy calculation of body section. For doing rollover analysis using body section, bus is selected which has already passed a full-rollover test.
2013-01-09
Technical Paper
2013-26-0029
Sujit Mungale, Leo S
Driver safety is one of the key considerations in truck design and development. Virtual simulation offers opportunities to reduce development time and the number of physical prototypes consumed for design verification and validation for safety parameters. Thus, the application of virtual simulations of crash has become an integral part of the vehicle development process. The continuously emerging scenarios involving challenging test requirements can only be tested by means of virtual simulation techniques. This paper presents simulations that are performed to verify various safety aspects to ensure crashworthiness of the truck cabin. The cabin structure was evaluated for various national/international safety regulations. The FE model and simulation methodology was validated through physical testing and correlated for frontal impact test and roof strength test as per AIS 029/ECE R29. Analysis performed to ensure compliance to upcoming regulation ECE R29 Revision 03 is also discussed.
2013-01-09
Technical Paper
2013-26-0060
V. Faustino, T. Srinivasulu, Arun S
There are no Indian and International standards on load bearing elements. There is a British Standard which specifies only the load requirements of Headboard, side walls and rear gate in case of sudden braking. This paper specifies in detail the load bearing elements and through Computer Aided Engineering (CAE) simulation, the percentage of load that can be borne by the load bearing elements under different types of load shifting has been determined.
2013-01-09
Technical Paper
2013-26-0054
Dushyant Bhatt, Shivraj Waje, K. V. R. Babu, Jurgen Henn, Sven Seifert, R. M. Cursetji, Dinesh Kumar, Touquire A. Siddiquie
Small Commercial Vehicle (SCV) is an emerging Commercial Vehicle (CV) segment both in India and throughout the world. Vehicles in this segment have diesel engine of capacity less than 1 l and GVW of less than 3.5 t. Normally for the CV, engines are tested on engine dynamometer for emission test, but SCV are tested on chassis dynamometer as they are classified as N1.1 class vehicles. Hence SCV have to follow same emission regulations as diesel passenger cars. The main challenge is to meet BS-IV NOx and PM emission target together with high torque optimization along with required durability targets. This paper addresses this challenge and reports the work carried out on an Indian SCV with 0.7 l naturally aspirated indirect injection diesel engine.
2013-01-09
Technical Paper
2013-26-0093
Vilas Gorakh Umbare
The design and analysis plays a major role for determining the root cause for the problem. Once the problem and its root cause were well defined, the solution for addressing the problem would be made clear. The engine excitation frequency and the chassis natural frequency were coming closer and it leads chassis to resonate. The resonance increases vibration levels at the Tractor footrest which was reducing comfort level of the operator. The vibration reduction methodologies like stiffening the structure, isolating the source from excitation and dampening techniques were studied to reduce vibration levels at footrest. The benchmarking evaluation was done with selected tractor models qualitatively to assess the difference in vibration level perception for customers. The test methodology and data acquisition methodology was formulated and used for better analysis and discussions.
2013-01-09
Technical Paper
2013-26-0097
Sachin Pawar, Murali Bodla, Rajesh Bhangale, Mansinh Kumbhar
Whole Body Vibration (WBV) of tractors was measured on different surfaces in real world usage pattern of Indian customers on tractors of various capacities. Vibration levels were measured at the interface of the seat and the operator, on the seat base/floor and on the head. The mean weighted Root Mean Square (RMS) values along the different axes, the vector sum of weighted RMS values along the three orthogonal axes, the crest factor, Vibration Dose Value (VDV) and 8 h exposure levels were calculated according to ISO 2631-1. In addition to the above parameters, the transmissibility between the seat base and the seat interface (SEAT) and between the seat interface and the operator head (TR) were also calculated. Finally, these parameters were correlated with the subjective feel of customers which was captured through suitable questionnaires. It is observed that the Indian tractor operators are exposed to WBV that exceeds the cautionary boundaries set in place by the ISO 2631-1.
2013-01-09
Technical Paper
2013-26-0096
Sanjoy Biswas, Goutam Mandal
Exhaust noise of automobiles is one of the major sources of noise pollution. Un-muffled exhaust noise is quite higher than other noise sources of automobile. Therefore, the use of an exhaust muffler is prompted by the need of engine exhaust noise reduction. Insertion loss is the key metric to evaluate the performance of any muffler and it mainly depends upon proper selection of muffler volume which is proportional to engine swept volume. Another major performance evaluating metric is backpressure. Also, shape, size, weight, durability, manufacturability and cost are the secondary but important criteria of muffler selection. Presently, there are many variants of exhaust muffler, having different overall performances (i.e. insertion loss, backpressure, shape, size, weight, manufacturability and cost) used for different variants of commercial vehicle, though engine swept volume is same for all.
2013-01-09
Technical Paper
2013-26-0100
J. Sai Prasad, N. Chollangi Damodar, T. Sudhakara Naidu
The acceptable noise and vibration performance is one of the most important requirements in a passenger bus as it is intended for widest spectrum of passengers covering all age groups. Gear rattle, being one of the critical factors for NVH and durability, plays a vital role in passenger comfort inside vehicle. The phenomenon of gear rattle happens due to irregularity in engine torque, causing impacts between the teeth of unloaded gear pairs of a gearbox which produce vibrations giving rise to this unacceptable acoustic response. In depth assessment of the dynamic behavior of systems and related components required to eliminate gear rattle. During normal running conditions, abnormal in-cab noise was perceived in a bus. Initial subjective evaluation revealed that the intensity was high during acceleration and deceleration. Objective measurements and analysis of the in-cab noise and vibration measurements had indicated that the noise is mainly due to gear rattling.
2013-01-09
Technical Paper
2013-26-0103
P. S. Yadav, A. A. Gaikwad, S. Y. Badgujar, Y. V. Surkutwar, N. V. Karanth
High noise at Operator Ear Level (OEL) of tractor is the major cause of fatigue to the operator. With growing competition, and upcoming legislative requirement there is ominous need for the agricultural tractor manufacturers to control noise levels. Objective of the present study is noise reduction on agriculture tractor by identifying and controlling key noise sources unaffecting performance parameters like power, torque and fuel efficiency to meet upcoming noise legislations. Noise Source Identification (NSI) is carried out to identify and rank airborne and structure borne noise sources. The airborne sources such as cooling fan, exhaust silencer and intake are evaluated using elimination method at tractor level. The NSI on engine is carried out separately in hemi anechoic chamber to identify the major noise radiating components by using noise and vibration measurement, sound intensity mapping tools.
2013-01-09
Technical Paper
2013-26-0104
Rohit Ravindran, Vijay Antony, Saisankaranarayana K, Kalyan S. Hatti
In recent years NVH has gained a lot of importance in the commercial vehicle industry as it contributes significantly towards user comfort and also towards the quality perception associated with a vehicle. The in-cabin noise of vehicles is critical towards the comfort and usability for the end user and the sound package installed on the vehicle plays a vital role in determining the levels associated with this attribute, especially the high frequency content. The paper discusses a methodology for optimizing the sound package for performance, cost and mass, for a truck. The approach uses a Statistical Energy Analysis (SEA) based optimization. A virtual SEA model is developed, which is correlated with actual test data. After establishing the correlation, an optimization study is carried out to identify the effectiveness of different materials and material combinations towards in-cabin noise.
Viewing 151 to 180 of 16239

Filter

  • Range:
    to:
  • Year: