Criteria

Text:
Display:

Results

Viewing 241 to 270 of 16241
2014-04-01
Technical Paper
2014-01-0491
Michael E. Zabala, Nicholas Yang, Stacy Imler, Ke Zhao, Rose Ray
Abstract Three years of data from the Large Truck Crash Causation Study (LTCCS) were analyzed to identify accidents involving heavy trucks (GVWR >10,000 lbs.). Risk of rollover and ejection was determined as well as belt usage rates. Risk of ejection was also analyzed based on rollover status and belt use. The Abbreviated Injury Scale (AIS) was used as an injury rating system for the involved vehicle occupants. These data were further analyzed to determine injury distribution based on factors such as crash type, ejection, and restraint system use. The maximum AIS score (MAIS) was analyzed and each body region (head, face, spine, thorax, abdomen, upper extremity, and lower extremity) was considered for an AIS score of three or greater (AIS 3+). The majority of heavy truck occupants in this study were belted (71%), only 2.5% of occupants were completely or partially ejected, and 28% experienced a rollover event.
2014-04-01
Technical Paper
2014-01-0435
Luciano Lukacs, Mahendra Dassanayake, Iuri Pepe
Abstract Nighttime driving behavior differs from that during the day because of unique scenarios presented in a driver's field of vision. At night drivers have to rely on their vehicle headlamps to illuminate the road to be able to see the environment and road conditions in front of him. In recent decades car illumination systems have undergone considerable technological advances such as the use of a Light Emitting Diode (LED) in Adaptive Front-lighting Systems (AFS), a breakthrough in lighting technology. This is rapidly becoming one of the most important innovative technologies around the world within the lighting community. This paper discusses driver's needs given the environment and road conditions using a survey applied to compare the needs of both truck and car drivers under different road conditions. The results show the potential and suitability of the methodology proposed for controlling truck-related lighting in any emergent market.
2014-04-01
Technical Paper
2014-01-0442
James K. Sprague, Peggy Shibata, Jack L. Auflick
Abstract A complete analysis of any vehicular collision needs to consider certain aspects of human factors. However, this is especially true of nighttime collisions, in which a more specialized approach is required. Classical collision investigation (frequently referred to as accident reconstruction) is comprised of kinetic and kinematic considerations including skid analysis, momentum techniques and other methods. While analysis based on these concepts is typically unaffected by low visibility conditions, the opposite is true of the perceptual and cognitive aspects of a “humans-in-the-loop” analysis, which can be enormously impacted by low visibility. Only by applying appropriate human factors techniques can the analyst make a defensible determination of how and why a nighttime collision occurred.
2014-04-01
Technical Paper
2014-01-0817
Chenaniah Langness, Michael Mangus, Christopher Depcik
Abstract In order to perform cutting-edge engine research that applies to modern Compression Ignition (CI) engines, a sophisticated test cell is needed that allows control of the engine and its auxiliary systems. The primary obstacle to the completion of such a test cell is the up-front expense. This paper covers the construction of a low cost, single-cylinder engine test cell while demonstrating the type of research that can be accomplished along the way. The components necessary for the construction, instrumentation, and operation of such a test cell, neglecting emissions analysis equipment, can be obtained for less than $150,000. The engine utilized, a naturally-aspirated single-cylinder Yanmar L100V, was purchased as an engine-generator package.
2013-09-08
Journal Article
2013-24-0012
Mirko Baratta, Roberto Finesso, Hamed Kheshtinejad, Daniela Misul, Ezio Spessa, Yixin Yang, Massimo Arcidiacono
An innovative 0D predictive combustion model for the simulation of the HRR (heat release rate) in DI diesel engines was assessed and implemented in a 1D fluid-dynamic commercial code for the simulation of a Fiat heavy duty diesel engine equipped with a Variable Geometry Turbocharger system, in the frame of the CORE (CO2 reduction for long distance transport) Collaborative Project of the European Community, VII FP. The 0D combustion approach starts from the calculation of the injection rate profile on the basis of the injected fuel quantities and on the injection parameters, such as the start of injection and the energizing time, taking the injector opening and closure delays into account. The injection rate profile in turn allows the released chemical energy to be estimated. The approach assumes that HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber.
2013-09-08
Technical Paper
2013-24-0093
Riccardo Rossi, Ettore Musu, Stefano Frigo, Roberto Gentili, Rolf D. Reitz
Due to concerns regarding pollutant and CO2 emissions, advanced combustion modes that can simultaneously reduce exhaust emissions and improve thermal efficiency have been widely investigated. The main characteristic of the new combustion strategies, such as HCCI and LTC, is that the formation of a homogenous mixture or a controllable stratified mixture is required prior to ignition. The major issue with these approaches is the lack of a direct method for the control of ignition timing and combustion rate, which can be only indirectly controlled using high EGR rates and/or lean mixtures. Homogeneous Charge Progressive Combustion (HCPC) is based on the split-cycle principle. Intake and compression phases are performed in a reciprocating external compressor, which drives the air into the combustor cylinder during the combustion process, through a transfer duct. A transfer valve is positioned between the compressor cylinder and the transfer duct.
2013-09-08
Technical Paper
2013-24-0081
Federico Millo, Rocco Fuso, Luciano Rolando, Jianning Zhao, Andrea Benedetto, Filippo Cappadona, Paolo Seglie
Nowadays the increasing demand for sustainable mobility has fostered the introduction of innovative propulsion systems also in the public transport sector in order to achieve a significant reduction of pollutant emissions in highly congested urban areas. Within this context this paper describes the development of the HYBUS, an environmental friendly hybrid bus for on-road urban transportation, which was jointly carried out by Pininfarina and Politecnico di Torino in the framework of the AMPERE project. The first prototype of the bus was built by integrating an innovative hybrid propulsion system featuring a plug-in series architecture into the chassis of an old IVECO 490 TURBOCITY. The bus is 12 meters long and has a capacity of up to 116 passengers in the original layout. The project relied on a modular approach where the powertrain could be easily customized for size and power depending on the specific application.
2013-09-08
Technical Paper
2013-24-0106
Steven G. Fritz, John C. Hedrick, James A. Rutherford
The objective of this project was to assess the effects of various blends of biodiesel on locomotive engine exhaust emissions. Systematic, credible, and carefully designed and executed locomotive fuel effect studies produce statistically significant conclusions are very scarce, and only cover a very limited number of locomotive models. Most locomotive biodiesel work has been limited to cursory demonstration programs. Of primary concern to railroads and regulators is understanding any exhaust emission associated with biodiesel use, especially NOX emissions. In this study, emissions tests were conducted on two locomotive models, a Tier 2 EMD SD70ACe and a Tier 1+ GE Dash9-44CW with two baseline fuels, conventional EPA ASTM No. 2-D S15 (commonly referred to as ultra-low sulfur diesel - ULSD) certification diesel fuel, and commercially available California Air Resource Board (CARB) ULSD fuel.
2013-04-08
Technical Paper
2013-01-0753
Al Bolander, Timothy Brooks, Peter Thompson
In support of the Department of Energy ( DOE) "SuperTruck" program, a group of low energy, high output light emitting diode (LED) lamps were developed for forward lighting. Reduction of the energy needs of the truck by saving fuel and reducing CO₂ emissions are two of the goals of this program. In support of the energy reduction, a retrofit LED headlamp was designed, built and tested. The retrofit headlamp was switched from a halogen bulb to an LED-based system. The LED headlamp requires a new approach in heat management. The use of the LED, which is a 2π source, requires a different strategy in the optics from those used with a 4π source, like a traditional incandescent, halogen, or High Intensity Discharge (HID) light source. A thermal management system is necessary to facilitate the long life of the LED source. A unique method for removing the heat of the LED and maintaining an acceptable temperature was tested and reported.
2011-04-12
Technical Paper
2011-01-0720
Lauren L. Thompson, Craig Jensen
Environmental concerns and government regulations are factors that have led to an increased focus on fuel economy in the automotive industry. This paper identifies a method used to improve the efficiency of a front-wheel-drive (FWD) automatic transmission. In order to create improvements in large complex systems, it is key to have a large scope, to include as much of the system as possible. The approach taken in this work was to use Design for Six Sigma (DFSS) methodology. This was done to optimize as many of the front-wheel-drive transmission components as possible to increase robustness and efficiency. A focus of robustness, or consistency in torque transformation, is as important as the value of efficiency itself, because of the huge range of usage conditions. Therefore, it was necessary to find a solution of the best transmission component settings that would not depend on specific usage conditions such as temperatures, system pressures, or gear ratio.
2011-04-12
Technical Paper
2011-01-0819
Ossi Kaario, Anders Brink, Kalle Lehto, Karri Keskinen, Martti Larmi
New measurements have been done in order to obtain information concerning the effect of EGR and a paraffinic hydrotreated fuel for the smoke and NO emissions of a heavy-duty diesel engine. Measured smoke number and NO emissions are explained using detailed chemical kinetic calculations and CFD simulations. The local conditions in the research engine are analyzed by creating equivalence ratio - temperature (Phi-T) maps and analyzing the CFD results within these maps. The study uses different amount of EGR and two different diesel fuels; standard EN590 diesel fuel and a paraffinic hydrotreated vegetable oil (HVO). The detailed chemical kinetic calculations take into account the different EGR rates and the properties of the fuels. The residence time in the kinetical calculations is used to explain sooting combustion behavior within diesel combustion. It was observed that NO emission trends can be well captured with the Phi-T maps but the situation is more difficult with the engine smoke.
2011-04-12
Technical Paper
2011-01-0801
Bong-Ha Hwang
Professional bus drivers are highly exposed to physical fatigue and work-related injuries because driving task includes complicated actions that require a variety of ability and cause extreme concentration or strain. For this reason, there has always been some sense of concern regarding driver fatigue, especially for drivers of commercial vehicles. In this study, we have tried to analyze quantitative fatigue degree of urban bus drivers by measuring their physiological signals. The investigation is made up of the following approaches: a traditional questionnaire survey and video-ethnographic method with 4-way cameras. The close-circuit cameras are installed to observe the upper and lower body of real drivers when they are in driving or even resting. This approach can help to understand urban bus drivers' behaviors and fatigue-related issues. Based on the video-ethnographic investigation results above, we have got certain patterns of drivers.
2011-04-12
Technical Paper
2011-01-0893
Keith Buford, Jonathan Williams, Matthew Simonini
Plug in hybrid electric vehicles (PHEV) and electric vehicles (EV) are using large lithium ion battery packs to store energy for powering electric traction motors. These batteries, or Rechargeable Energy Storage Systems (RESS), have a narrow temperature operating range and require thermal management systems to properly condition the batteries for use in automotive applications. This paper will focus on energy optimization of a RESS cooling system. The battery thermal management system for the General Motors Chevrolet Volt has three distinct modes for battery cooling: active cooling, passive cooling, and bypass. Testing was conducted on each individual thermal cooling mode to optimize, through control models, the energy efficiency of the system with the goal of maximizing electric vehicle range.
2011-04-12
Technical Paper
2011-01-1140
Julian Tan, Charles Solbrig, Steven J. Schmieg
Diesel engines have the potential to significantly increase vehicle fuel economy and decrease CO₂ emissions; however, efficient removal of NOx and particulate matter from the engine exhaust is required to meet stringent emission standards. A conventional diesel aftertreatment system consists of a Diesel Oxidation Catalyst (DOC), a urea-based Selective Catalyst Reduction (SCR) catalyst and a diesel particulate filter (DPF), and is widely used to meet the most recent NOx (nitrogen oxides comprising NO and NO₂) and particulate matter (PM) emission standards for medium- and heavy-duty sport utility and truck vehicles. The increasingly stringent emission targets have recently pushed this system layout towards an increase in size of the components and consequently higher system cost. An emerging technology developed recently involves placing the SCR catalyst onto the conventional wall-flow filter.
2011-04-12
Technical Paper
2011-01-1207
Wim Van Dam, Mark W. Cooper, Kenneth Oxorn, Scott Richards
Since the invention of the internal combustion engine, the contact between piston ring and cylinder liner has been a major concern for engine builders. The quality and durability of this contact has been linked to the life of the engine, its maintenance, and its exhaust gas and blowby emissions, but also to its factional properties and therefore fuel economy. While the basic design has not changed, many factors that affect the performance of the ring/liner contact have evolved and are still evolving. This paper provides an overview of observations related to the lubrication of the ring/liner contact.
2011-04-12
Technical Paper
2011-01-1206
Wim van Dam, Trevor Miller, Gary Parsons
The heightened interest level in Fuel Economy for Heavy Duty Diesel Engines the industry has seen over the last few years continues to be high, and is not likely to change. Lowering the fuel consumption of all internal combustion engines remains a priority for years to come, driven by economic, legislative, and environmental reasons. While it is generally assumed that lower viscosity grade lubricants offer fuel economy benefits, there is a lot of confusion about exactly what drives the fuel economy benefits. Fuel Economy claims in trade literature vary over a broad range and it is difficult for the end user to determine what to expect when a change in lubricant viscosity is adopted for a fleet of vehicles in a certain type of operation. This publication makes an attempt at clarifying a number of these uncertainties with the help of additional engine test data, and more extensive data analysis.
2011-04-12
Technical Paper
2011-01-1329
Mario Castagnola, Jonathan Caserta, Sougato Chatterjee, Hai-Ying Chen, Raymond Conway, Joseph Fedeyko, Wassim Klink, Penelope Markatou, Sandip Shah, Andrew Walker
Since early 2010, most new medium- and heavy-duty diesel vehicles in the US rely on urea-based Selective Catalytic Reduction (SCR) technology for meeting the most stringent regulations on nitrogen oxides (NOx) emissions in the world today. Catalyst technologies of choice include Copper (Cu)- and Iron (Fe)-based SCR. In this work, the performances of Fe-SCR and Cu-SCR were investigated in the most commonly used DOC + CSF + SCR system configuration. Cu-SCR offered advantages over Fe-SCR in terms of low temperature conversion, NO₂:NOx ratio tolerance and NH₃ slip, while Fe-SCR demonstrated superior performance under optimized NO₂:NOx ratio and at higher temperatures. The Cu-SCR catalyst displayed less tolerance to sulfur (S) exposure. Reactor testing has shown that Cu-SCR catalysts deactivate at low temperature when poisoned by sulfur.
2011-04-12
Technical Paper
2011-01-1330
Chaitanya Narula, Xiaofan Yang, Peter Bonnesen, Edward Hagaman
The leading approach for reduction of NOx from diesel engines is selective catalytic reduction employing urea as a reductant (NH₃- or urea-SCR). For passenger vehicles, the best known NH₃-SCR catalysts are Cu-ZSM-5 and Fe-ZSM-5 and have been shown to function very well in a narrow temperature range. This technology is not directly transferable to off-road diesel engines which operate under a different duty cycle resulting in exhaust with different fractions of components than are present in passenger vehicle emissions. Our results show that Cu-ZSM-5 exhibits 90% NOx reduction efficiency in 250-450°C range while Fe-ZSM-5 is highly effective in 350-550°C range for off-road engines. However, a combination of these catalysts cannot efficiently reduce NOx in 150-650°C which is the desirable range for deployment in off-road diesel engines. In our efforts to increase the effective range of these catalysts, we initiated efforts to modify these catalysts by catalyst promoters.
2011-04-12
Technical Paper
2011-01-1337
Talus Park, Ho Teng, Gary L. Hunter, Bryan van der Velde, Jeffrey Klaver
A Rankine cycle system with ethanol as the working fluid was developed to investigate the fuel economy benefit of recovering waste heat from a 10.8-liter heavy-duty (HD) truck diesel engine. Recovering rejected heat from a primary engine with a secondary bottoming cycle is a proven concept for improving the overall efficiency of the thermodynamic process. However, the application of waste heat recovery (WHR) technology to the HD diesel engine has proven to be challenging due to cost, complexity, packaging and control during transient operation. This paper discusses the methods and technical innovations required to achieve reliable high performance operation of the WHR system. The control techniques for maintaining optimum energy recovery while protecting the system components and working fluid are described. The experimental results are presented and demonstrate that 3-5% fuel saving is achievable by utilizing this technology.
2011-04-12
Technical Paper
2011-01-1322
Subhasish Bhattacharjee, Daniel C. Haworth, Roxanna Moores
This project is one component of a broader effort whose ultimate goal is to provide CFD-based tools that can be used to optimize the design of urea SCR NOx aftertreatment systems for heavy-duty diesel engines. Here the focus is on predicting the distributions of key chemical species (ammonia, in particular) at the inlet to the catalysts. Two aspects of the physical models have been emphasized: the multi-phase models, and the gas-phase chemistry models. A hierarchy of four simplified geometric configurations has been used for model development and parametric studies, and to establish the appropriate level of physical modeling and numerical fidelity required. The resulting physical and numerical parameters then have been used to model a production SCR system. Initial quantitative comparisons with experimental measurements are encouraging.
2011-04-12
Journal Article
2011-01-1312
Mojghan Naseri, Sougato Chatterjee, Mario Castagnola, Hai-Ying Chen, Joseph Fedeyko, Howard Hess, Jianquan Li
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as an effective solution for controlling NOx emissions from diesel engines. Typical 2010 Heavy-Duty systems include a DOC along with a catalyzed soot filter (CSF) in addition to the SCR sub-assembly. There is a strong desire to further increase the NOx conversion capability of such systems, to enable additional fuel economy savings by allowing engines to be calibrated to higher engine-out NOx levels. One potential approach is to replace the CSF with a diesel particulate filter coated with SCR catalysts (SCR-DPF) while keeping the flow-through SCR elements downstream, which essentially increases the SCR volume in the after-treatment assembly without affecting the overall packaging. In this work, a system consisting of SCR-DPF was evaluated in comparison to the DOC + CSF components from a commercial 2010 DOC + CSF + SCR system on an engine with the engine EGR on (standard engine-out NOx) and off (high engine-out NOx).
2011-04-12
Technical Paper
2011-01-1316
Teuvo Maunula, Toni Kinnunen, Markus Iivonen
The emission regulations for mobile off-road applications are following on-road trends by a short delay. The latest Stage 3B and 4 emission limits mean a gradual implementation of oxidation and SCR catalysts as well as particulate filters with off-road machines/vehicles in the 2010s. The driving conditions and test cycles differ from on-road truck applications which have been the first design base for off-road aftertreatment technologies. Aftertreatment systems for Stage 4 were first analyzed and they will include oxidation catalysts, a NOx reduction catalyst (SCR or LNT), a particulate filter and possibly units for urea hydrolysis and ammonia slip removal. The design and durability of V₂O₅/TiO₂-WO₃ catalysts based on metallic substrates were investigated by engine bench and field experiments. NOx emissions were measured with 6.6 and 8.4 liters engines designed for agricultural and industrial machinery.
2011-04-12
Technical Paper
2011-01-1382
Wenbin Yu, Bin Liu, Yang Li, Qingpeng Su, Yiqiang Pei, Wanhua Su
Combustion control strategy for high efficiency and low emissions in a heavy duty (H D) diesel engine was investigated experimentally in a single cylinder test engine with a common rail fuel system, EGR (Exhaust Gas Recirculation) system, boost system and retarded intake valve closing timing actuator. For the operation loads of IMEPg (Gross Indicated Mean Effective Pressure) less than 1.1 MPa the low temperature combustion (LTC) with high rate of EGR was applied. The fuel injection modes of either single injection or multi-pulse injections, boost pressure and retarded intake valve closing timing (RIVCT) were also coupled with the engine operation condition loads for high efficiency and low emissions. A higher boost pressure played an important role in improving fuel efficiency and obtaining ultra-low soot and NOx emissions.
2011-04-12
Journal Article
2011-01-1383
Clément Chartier, Oivind Andersson, Bengt Johansson, Mark Musculus, Mohan Bobba
Post-injection strategies aimed at reducing engine-out emissions of unburned hydrocarbons (UHC) were investigated in an optical heavy-duty diesel engine operating at a low-load, low-temperature combustion (LTC) condition with high dilution (12.7% intake oxygen) where UHC emissions are problematic. Exhaust gas measurements showed that a carefully selected post injection reduced engine-out load-specific UHC emissions by 20% compared to operation with a single injection in the same load range. High-speed in-cylinder chemiluminescence imaging revealed that without a post injection, most of the chemiluminescence emission occurs close to the bowl wall, with no significant chemiluminescence signal within 27 mm of the injector. Previous studies have shown that over-leaning in this near-injector region after the end of injection causes the local equivalence ratio to fall below the ignitability limit.
2011-04-12
Technical Paper
2011-01-1163
Mrinmoy Dam, John Nuszkowski, Gregory J. Thompson
Diesel engines are highly reliable, durable and are used for a wide range of applications with low fuel usage owing to its higher thermal efficiency compared to other mobile power sources. Heavy-duty diesel engines are used for both on-road and off-road applications and dominate the heavy-duty engine segment of the United States transportation market. Due to their high reliability, there are considerable numbers of on-road legacy heavy-duty diesel engine fleets still in use in the United States. These engines are relatively higher oxides of nitrogen (NOx) and particulate matter (PM) producers than post 2007 model year diesel engines. There have been various emission certification or verification programs which are carried out in states like California and Texas for different aftermarket retrofit devices, fuels and additive technologies for reducing NOx and PM emissions from these legacy diesel engines.
2011-05-17
Technical Paper
2011-01-1531
Michael Thivant, pascal BOUVET PhD, Alexandre Carbonelli
Due to the increasing focus on noise and vibration for future vehicles, there is a need for a clear definition of the requirements between vehicle manufacturers and auxiliary suppliers. Auxiliary characterisations are also needed as input for structure-borne numerical prediction models. Strongly coupled systems are amongst the most difficult structure-borne noise issues, as the transmitted forces and powers are strongly dependent upon the mobilities of both the vibration source and receiver. The so-called “blocked forces” can be used as intrinsic source descriptions. The challenge is then to design auxiliary test benches perfectly rigid in the frequency range of interest. The current paper is based on the French research program MACOVAM dedicated to the vibro-acoustic characterisation of oil pumps for truck engines. An original test bench was designed to measure quasi-blocked forces over the [150 Hz-2800 Hz] frequency range.
2011-08-30
Technical Paper
2011-01-1998
Vilmar AEsoy, Per Magne Einang, Dag Stenersen, Erik Hennie, Ingebrigt Valberg
The maritime transportation sector is facing new international restrictions on exhaust emissions. NOx and SOx emissions from traditional marine fuels are a major challenge, which make natural gas a promising new clean alternative. Since the late 1980s, new concepts for medium-speed natural gas-fuelled engines have been developed, primarily for stationary power generation. This technology is currently entering the mobile sector, where Spark Ignition engines, Dual-Fuel engines and High Pressure Gas engines offer advantages such as high efficiency, low emissions and fuel flexibility. The availability of liquefied natural gas (LNG) is increasing, not least via small-scale distribution systems. In Norway, 23 coastal traffic vessels operate on LNG supplied by a distribution system that also supplies city bus fleets. This paper discusses the development of natural gas engines and fuel system technology, and describes experiences from LNG-fuelled ships in operation in Norway.
2011-08-30
Technical Paper
2011-01-2004
P. Huyskens, S. Van Oost, P. J. Goemaere, K. Bertels, M. Pecqueur
The chicken or the egg dilemma is an often used metaphor to explain the problem where car manufacturers are not eager to produce hydrogen cars since there are no hydrogen fueling stations. Petrochemical companies on the other side, do not want to invest in hydrogen fueling stations for there are no cars to fuel. Many proposals have been made to overcome this predicament, for example starting the implementation of the hydrogen economy with early markets such as public busses that run on hydrogen, because they can use a centralized fueling infrastructure and thereby reduce initial costs. However, another way to address this stalemate is by avoiding the dependency on hydrogen fueling infrastructure. This can be achieved by using flex-fuel vehicles that can run on hydrogen as well as on gasoline and/or compressed natural gas.
2011-08-30
Journal Article
2011-01-1961
Takashi Hara, Naoki Shimazaki, Naoki Yanagisawa, Takeshi Seto, Shigehisa Takase, Takeshi Tokumaru, Takurou Mita, Takeshi Okamoto, Yoshio Sato
Study of DME diesel engines was conducted to improve fuel consumption and emissions of its. Additionally, DME trucks were built for the promotion and the road tests of these trucks were executed on EFV21 project. In this paper, results of diesel engine tests and DME truck driving tests are presented. As for DME diesel engines, the performance of a DME turbocharged diesel engine with LPL-EGR was evaluated and the influence of the compression ratio was also explored. As for DME trucks, a 100,000km road test was conducted on a DME light duty truck. After the road test, the engine was disassembled for investigation. Furthermore, two DME medium duty trucks have been developed and are now the undergoing practical road testing in each area of two transportation companies in Japan.
2011-08-30
Technical Paper
2011-01-1962
Fredrik Konigsson, Per Stalhammar, Hans-Erik Ångström
Diesel Dual Fuel, DDF, is a concept where a combination of methane and diesel is used in a compression ignited engine, maintaining the high compression ratio of a diesel engine with the resulting benefits in thermal efficiency. One benefit of having two fuels on board the vehicle is the additional degree of freedom provided by the ratio between the fuels. This additional degree of freedom enables control of combustion phasing for combustion modes such as Homogenous Charge Compression Ignition, HCCI, and Partly Premixed Compression Ignition, PPCI. These unconventional combustion modes have great potential to limit emissions at light load while maintaining the low pumping losses of the base diesel engine. A series of tests has been carried out on a single cylinder lab engine, equipped with a modern common rail injection system supplying the diesel fuel and two gas injectors, placed in the intake runners.
Viewing 241 to 270 of 16241

Filter

  • Range:
    to:
  • Year: