Criteria

Text:
Display:

Results

Viewing 181 to 210 of 58639
2011-09-13
Technical Paper
2011-01-2247
Mohammad Rezvani, Mohamed AbuAli PhD, Seungchul Lee, Jay Lee, Jun Ni PhD
Batteries are widely used as storage devices and they have recently gained popularity due to their increasing smaller sizes, lighter weights and greater energy densities. These characteristics also render them suitable for powering electric vehicles. However, a key gap exists in that batteries are solely used as storage devices with a lack of information flow. Next-generation battery technologies will constitute the enabling tools that would lead to information-rich batteries, thus allowing the transparent assessment of a battery's health as well as the prediction of a battery's remaining-useful-life (RUL) and its subsequent impact on vehicle mobility. Various methods and techniques have been employed to predict battery RUL in order to improve the accuracy of the State of Charge (SoC) estimation.
2011-09-13
Journal Article
2011-01-2242
Amit J Bora, Robert White, Dalsang Chaudhari
Gear rattle noise is a common issue in manual gear transmissions and is often difficult to resolve. This paper discusses a methodology involving development of a simulation model for noise prediction and subsequent design of experiments (DOE) analysis to select optimal design parameters to reduce rattle noise. A one-dimensional torsional vibration simulation model for a tractor driveline was developed and was correlated with experimental measurements. This correlated model was used to calculate the torque variation between the gear pairs based on engine excitations. The standard deviation of this mesh torque was used as a metric and was correlated to noise ratings assigned by experts during experimental evaluation. Using this metric as the response variable, a DOE was conducted to determine the contributing factors and their influence on the rattle noise. Optimal design parameters were selected to achieve target value on the rattle metric.
2011-09-13
Technical Paper
2011-01-2238
Shannon K. Sweeney
This work provides a theoretical analysis of the natural and forced lateral vibration in a driveline having a flexible coupling and universal joints. The analysis is specific to the front driveline common in many off-highway vehicles which usually consists of a flexible coupling at the engine flywheel, the driveshaft, and one or two universal joints. A torsionally flexible coupling is often needed in a front driveline to suppress torsional vibration. The problem is that most torsionally flexible couplings are also inherently flexible in their radial and cocking directions. These additional directions of flexibility, compounded by the presence of universal joints, can result in unexpectedly low lateral natural frequencies of the driveline. With a few axial dimensions, mass properties of the driveline, and stiffness properties of the flexible coupling, this work provides simple, closed-form calculations for the lowest lateral natural frequencies.
2011-09-13
Technical Paper
2011-01-2235
Rohit Kunal
This paper presents a simulation of the stiffness of the shift fork of a manual transmission using contact pattern analysis and optistrut. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A-5-speed manual transmission is used as an example to illustrate the simulation, co-relation and validation of the optimization of the gear shift fork stiffness. The shift system was modeled in the software to collate the synchronization force, shift system gap etc with the constraint on the shift fork. It is constrained by the synchronizer sleeve and the fork mounting on the gear shift rail. The synchronizer force is then applied on the gear shift fork pads which are translated to the synchronizer sleeve. It has a number of pads which come into contact at different occasion of the synchronization because of the varying stiffness of the fork.
2011-09-13
Technical Paper
2011-01-2233
Anandan Sivakumar, Raghvendra Gopal
Diesel engine fuel hose return line is considered as a low pressure line and consists of two layers. The inner layer is used to carry the excess fuel, thereby hose material shall have resistance to fuel and its residues. The outer layer is used to protect inner layer from heat, ozone and oil spillage, thereby outer cover material shall have resistance against the heat, ozone and engine oil. Currently NBR PVC, NBR and FKM materials have been used as inner layer materials in diesel engine fuel hose outer cover application, according to service temperature. Halogen contained CSM material has been used for outer cover application and the production of CSM material was withdrawn by one of the major manufacturer recently. Current global challenge is to use environment friendly material in vehicle components to make hazardous free environment. To replace CSM material, which contains Halogen, the available options are CPE, CR, HNBR and AEM materials.
2011-09-13
Journal Article
2011-01-2232
Marc Megel, Barry Westmoreland, Guy Jones, Ford Phillips, Douglas Eberle, Mark Tussing, NIgel Yeomans
Historically, heavy-duty diesel (HDD) engine designs have evolved along the path of increased power output, improved fuel efficiency and reduced exhaust gas emissions, driven both by regulatory and market requirements. The various technologies employed to achieve this evolution have resulted in ever-increasing engine operating cylinder pressures, higher than for any other class of internal combustion engine. Traditional HDD engine design architecture limits peak cylinder pressure (PCP) to about 200 bar (2900 psi). HDD PCP had steadily increased from the early 1970's until the mid 2000's, at which point the structural limit was reached using traditional methods and materials. Specific power output reversed its historical trend and fell at this time as a result of technologies employed to satisfy new emissions requirements, most notably exhaust gas recirculation (EGR).
2009-06-15
Technical Paper
2009-01-1902
Masato Iwami, Tetsuo Nohara, Takashi Saika
Fuel without carbon is essential effective in preventing global warming by carbon dioxide. Hydrogen has no carbon and can be made also from the resources such as nuclear energy or renewable energies. However hydrogen is lack of portability for automobiles because of its difficulty in liquefying. Ammonia also has an advantage in terms of global warming because of carbon-free fuel. A hydrogen generation system fueled with ammonia from urea for a fuel-cell electric vehicle is described in this paper. In ammonia, the handling must be careful of safety specifically because toxicity of ammonia affects a human body and a fuel cell. On the other hand, urea can be easily changed into ammonia and dealt with safety. The license for handling of urea is unnecessary, and there are also achievements as a NOx reducing agent for diesel engines. The authors have proposed urea as a hydrogen carrier via ammonia.
2009-06-15
Technical Paper
2009-01-1901
Yosuke Saito, Hiroshi Mitsui, Tetsuo Nohara, Yuji Aoki, Takashi Saika
Clean fuels that emit no greenhouse effect gas are requested in various fields especially of the global warming issue. The authors have proposed a hydrogen generation system using ammonia as a liquid fuel for fuel cells. The system consists of a cracking reactor, a heat exchanger and an ammonia separator to remove residual ammonia. It have been clarified that ammonia by 13 ppm or more causes an output decrease in polymer electrolyte fuel cells. In this study, the cracking efficiencies of ammonia were investigated with two kinds of and two shapes of catalysts to review the optimum conditions of the system. The conditions were decided by analyzing hydrogen concentration and residual ammonia concentration for some cracking temperatures and space velocities. At the cracking temperature of 500°C, the cracking efficiency of Ru/Al2O3 catalyst has shown sufficient results.
2009-06-15
Technical Paper
2009-01-1900
Joseph McDonald, Brian A. Olson
The U.S. Environmental Protection Agency has completed a program to demonstrate the feasibility of using integrated catalyst-muffler exhaust systems for nonroad spark ignition gasoline Class I engines (sub-19 kW, less than 225 cc). Integrated catalyst-muffler systems were developed for 4 different Class I engine families. Passive secondary air-injection systems were used with most of the systems to provide an exhaust feed-gas composition that was slightly rich of stoichiometry when used in conjunction with unmodified “Phase 2” carburetor A/F ratio calibrations. Catalyst sizing, PGM loading, and secondary-air venturi design were selected to limit CO oxidation and the typically resultant high heat rejection at high load operating points while still providing good NOx and HC emission control. Infrared thermal imaging was used to assess heat rejection at the EPA A-cycle operational points and during simulated hot soaks for selected configurations.
2009-06-15
Technical Paper
2009-01-1899
Joseph McDonald, Brian Olson, Marc Murawski
The U.S. Environmental Protection Agency has completed a program to demonstrate the feasibility of using low-cost engine management systems and modern, high-efficiency exhaust catalysts for nonroad spark ignition gasoline Class II engines (sub-19 kW, greater than 225 cc). Low-cost electronic engine management and fuel injection systems originally developed for motor-scooter and small motorcycle applications were installed on two 500cc single-cylinder spark-ignition lawn-and-garden engines. Integrated catalyst-muffler systems were developed for both engines and fuel control was calibrated to achieve emission control goals while maintaining or improving fuel consumption, engine durability and performance. NOx+HC emissions were reduced approximately 75% and brake-specific fuel-consumption improved by 6 to 12%. .
2009-06-15
Technical Paper
2009-01-1906
Arka Soewono, Steve Rogak
The scattering properties (influenced by morphology) and refractive index (dependent on microstructure) of engine-emitted soot influences its effect on climate, as well as how we interpret optical measurements of aerosols. The morphology and microstructure of soot from two different engines were studied. The soot samples were collected from a 1.9L Volkswagen TDI engine for two different fuel types (ULSD and B20) and six speed/load combinations., as well as from a Cummins ISX heavy-duty engine using the Westport pilot-ignited high-pressure direct-injection (HPDI) natural-gas fuelling system for three different speed/load combinations. The transmission electron microscopy (TEM) was employed to investigate the soot morphology, emphasizing the fractal properties. Image processing was used to extract the geometrical properties of the thirty-five randomly chosen aggregates from each sample.
2009-06-15
Journal Article
2009-01-1907
Kenneth Kar, Wai Cheng, Kaoru Ishii
The NOx emission and knock characteristics of a PFI engine operating on ethanol/gasoline mixtures were assessed at 1500 and 2000 rpm with λ =1 under Wide-Open-Throttle condition. There was no significant charge cooling due to fuel evaporation. The decrease in NOx emission and exhaust temperature could be explained by the change in adiabatic flame temperature of the mixture. The fuel knock resistance improved significantly with the gasohol so that ignition could be timed at a value much closer or at MBT timing. Changing from 0% to 100% ethanol in the fuel, this combustion phasing improvement led to a 20% increase in NIMEP and 8 percentage points in fuel conversion efficiency at 1500 rpm. At 2000 rpm, where knocking was less severe, the improvement was about half (10% increase in NIMEP and 4 percentage points in fuel conversion efficiency).
2009-06-15
Journal Article
2009-01-1904
Patrick Kirchen, Peter Obrecht, Konstantinos Boulouchos
Measurements of the soot emissions and engine operating parameters from a diesel engine during transient operation were used to investigate the influence of transient operation on the soot emissions, as well as to validate a realtime mean value soot model (MVSM, [1]) for transient operation. To maximize the temporal resolution of the soot emission and engine parameter measurements (in particular EGR), fast instruments were used and their dynamic responses characterized and corrected. During tip-in transients, an increase in the soot emissions was observed due to a short term oxygen deficit compared to steady-state operation. No significant difference was seen between steady-state and transient operation for acceleration transients. When the MVSM was provided with inputs of sufficient temporal resolution, it was capable of reproducing the qualitative and, in part, quantitative soot emission trends.
2009-06-15
Journal Article
2009-01-1903
D. L. Lance, C. L. Goodfellow, J. Williams, W. Bunting, I. Sakata, K. Yoshida, S. Taniguchi, K. Kitano
In an effort to reduce CO2 emissions, governments are increasingly mandating the use of various levels of biofuels. While this is strongly supported in principle within the energy and transportation industries, the impact of these mandates on the transport stock’s CO2 emissions and overall operating efficiency has yet to be fully explored. This paper provides information on studies to assess biodiesel influences and effects on engine performance, driveability, emissions and fuel consumption on state-of-the-art Euro IV compliant Toyota Avensis D4-D vehicles with DPNR aftertreatment systems. Two fuel matrices (Phases 1 & 2) were designed to look at the impact of fuel composition on vehicle operation using a wide range of critical parameters such as cetane number, density, distillation and biofuel (FAME) level and type, which can be found within the current global range of Diesel fuel qualities.
2009-06-15
Technical Paper
2009-01-1894
Somnuek Jaroonjitsathian, Nirod Akarapanjavit, Somchai Siang Sa-norh, Ratanavalee In-ochanon, Arunratt Wuttimongkolchai, Chonchada Tipdecho, Keiichi Tsuchihashi, Haruhisa Shirakawa
The higher portion of biodiesel blended fuel will result in lower power output since biodiesel itself has lower energy input (B20 gave about 3% lower torque output at peak torque speed). In the ELR (Engine Load Response) Test Cycle, biodiesel blended fuel emitted less smoke than diesel fuel, while CO and NOx emission of biodiesel blended fuel and diesel fuel are comparable. Biodiesel particulate matter (PM) seemed to be higher than diesel fuel. In addition, additized biodiesel blended fuels (B5, B10 and B20) proved qualitative in oxidation stability, acid value, etc. Biodiesel specific lubricant confirmed its functions by evaluating the viscosity increase, fuel dilution, TAN, TBN and wear metal content during engine durability test. The used oil analysis affirmed that the lubricant could effectively be used with particular biodiesel blended fuel in advanced, heavy-duty common-rail DI diesel engines.
2009-06-15
Technical Paper
2009-01-1893
C. D. Bannister, J. G. Hawley, H. M. Ali, C. J. Chuck, P. Price, A. J. Brown, W. Pickford
A number of studies have been carried out examining the impact of biodiesel blend ratio on vehicle performance and emissions, however there is relatively little data available on the interaction between blend ratio and reduced ambient temperatures over the New European Drive Cycle (NEDC). This study examines the effects of increasing the blend ratio of Rapeseed Methyl Ester (RME) on the NEDC fuel consumption and tailpipe emissions of a vehicle equipped with a 2.0 litre common rail diesel engine, tested on a chassis dynamometer at ambient temperatures of 25, 10 & −5°C. This study found that under low temperature ambient conditions increasing blend ratios had a significant detrimental effect on vehicle particulate emissions reversing the benefits observed at higher ambient temperatures. Blend ratio was found to have minimal impact on hydrocarbon emissions regardless of ambient temperature while carbon monoxide and NOx emissions were found to increase by up to 20% and 5.5% respectively.
2009-06-15
Journal Article
2009-01-1892
John B. Heywood, Orian Z. Welling
A prior study (Chon and Heywood, [1]) examined how the design and performance of spark-ignition engines evolved in the United States during the 1980s and 1990s. This paper carries out a similar analysis of trends in basic engine design and performance characteristics over the past decade. Available databases on engine specifications in the U.S., Europe, and Japan were used as the sources of information. Parameters analyzed were maximum torque, power, and speed; number of cylinders and engine configuration, cylinder displacement, bore, stroke, compression ratio; valvetrain configuration, number of valves and their control; port or direct fuel injection; naturally-aspirated or turbocharged engine concepts; spark-ignition and diesel engines. Design features are correlated with these engine’s performance parameters, normalized by engine and cylinder displacement.
2009-06-15
Technical Paper
2009-01-1891
Jing Yang, Xiaolong Yang, Jingping Liu, Zhiyu Han, Zhihua Zhong
As the issue of oil shortage and air pollution caused by automotive engine emissions become more and more serious day by day, researchers and engineers from all over the world are seeking for alternative fuels of lower pollution and renewable nature. This paper discusses in detail the feasibility of fueling gasoline engines with Butanol-gasoline blends. Besides the production, transportation, storage, physical and chemical properties of Butanol-gasoline blends, the combustion characteristics were analyzed as well. As the result Butanol was considered an excellent alternative fuel for gasoline engines, with many unique advantages superior to Natural Gas, LPG, Carbinol and Ethanol, the latter are widely studied at present time. In order to validate the above conclusions in engine application, engine dyno tests were conducted for a gasoline engine fueled with different concentrations of Butanol blend ranging from 10% to up to 35%.
2009-06-15
Technical Paper
2009-01-1898
Tao Bo, Fabian Mauss, Linda M. Beck
This paper explains the principle and advantages of the Ignition Progress Variable Library (IPV-Library) approach and its use in predicting engine related premixed, non-premixed and compression ignited combustion events. The implementation of IPV-Library model in the engine-focused CFD code VECTIS is described. To demonstrate the application of the model in predicting various types of combustion, computational results from a 2-stroke HCCI engine, a premixed spark ignition engine and an HSDI diesel engine are presented, together with some comparisons with engine test data.
2009-06-15
Technical Paper
2009-01-1897
Hiroshi Kawanabe, Ryo Yamamoto, Takuji Ishiyama
Diesel combustion model for CFD simulation is established taking account of an auto-ignition process of non-homogeneous mixture. Authors revealed in their previous paper that the non-homogeneity of fuel-air mixture affected more on auto-ignition process such as its ignition delay or combustion duration than the turbulent mixing rate. Based on these results, novel diesel combustion model is proposed in this study. The transport calculation for local variation of fuel-air PDF is introduced and the chemical reaction rate is provided by the local non-homogeneity. Furthermore, this model is applied the RANS based CFD simulation of the spray combustion in a Diesel engine condition. The results show that the combustion process is well described for several engine operations.
2009-06-15
Technical Paper
2009-01-1896
Rizalman Mamat, Nik Rosli Abdullah, Hongming Xu, Miroslaw L. Wyszynski, Athanasios Tsolakis
The paper presents analysis of performance and emission characteristics of a common rail diesel engine operating with RME, with and without EGR. In both cases, the RME fuel was pre-heated in a heat exchanger to control its temperature before being pumped to the common rail. The studied parameters include the in-cylinder pressure history, rate of heat release, mass fraction burned, and exhaust emissions. The results show that when the fuel temperature increases and the engine is operated without EGR, the brake specific fuel consumption (bsfc) decreases, engine efficiency increases and NOx emission slightly decreases. However, when EGR is used while fuel temperature is increased, the bsfc and engine efficiency is independent of fuel temperature while NOx slightly increases.
2009-06-15
Technical Paper
2009-01-1895
George Karavalakis, Stamoulis Stournas, George Fontaras, Zissis Samaras, George Dedes, Evangelos Bakeas
This study examines the effects of neat soy-based biodiesel (B100) and its 50% v/v blend (B50) with low sulphur automotive diesel on vehicle PAH emissions. The measurements were conducted on a chassis dynamometer with constant volume sampling (CVS) according to the European regulated technique. The vehicle was a Euro 2 compliant diesel passenger car, equipped with a 1.9 litre common-rail turbocharged direct injection engine and an oxidation catalyst. Emissions of PAHs, nitro-PAHs and oxy-PAHs were measured over the urban phase (UDC) and the extra-urban phase (EUDC) of the type approval cycle (NEDC). In addition, for evaluating realistic driving performance the non-legislated Artemis driving cycles (Urban, Road and Motorway) were used. Overall, 12 PAHs, 4 nitro-PAHs, and 6 oxy-PAHs were determined. The results indicated that PAH emissions exhibited a reduction with biodiesel during all driving modes.
2009-06-15
Technical Paper
2009-01-1882
Anup M. Kulkarni, Karla C. Stricker, Angeline Blum, Gregory M. Shaver
Premixed charge compression ignition (PCCI), an advanced mode combustion strategy, promises to simultaneously deliver the fuel efficiency of diesel combustion and the ultra-low NOx emissions that usually require advanced exhaust aftertreatment. A flexible, computationally efficient, whole engine simulation model for a 2007 6.7-liter diesel engine with exhaust gas recirculation (EGR), variable-geometry turbo-charging (VGT), and common rail fuel injection was validated after extensive experimentation. This model was used to develop strategies for highly fuel-efficient, ultra-low NOx emission PCCI. The primary aim of this modeling investigation is to determine the PCCI control authority present on a modern diesel engine outfitted with both conventional actuators (multi-pulse fuel injectors, an EGR valve, and VGT) and flexible intake valve closure modulation (IVCM) which dictates the effective compression ratio (ECR).
2009-06-15
Technical Paper
2009-01-1883
Ming Zheng, Yuyu Tan, Graham T Reader, Usman Asad, Xiaoye Han, Meiping Wang
Diesel engines operating in the low-temperature combustion (LTC) mode generally tend to produce very low levels of NOx and soot. However, the implementation of LTC is challenged by the higher cycle-to-cycle variation with heavy EGR operation and the narrower operating corridors. The robustness and efficiency of LTC operation in diesel engines can be enhanced with improvements in the promptness and accuracy of combustion control. A set of field programmable gate array (FPGA) modules were coded and interlaced to suffice on-the-fly combustion event modulations. The cylinder pressure traces were analyzed to update the heat release rate concurrently as the combustion process proceeds prior to completing an engine cycle. Engine dynamometer tests demonstrated that such prompt heat release analysis was effective to optimize the LTC and the split combustion events for better fuel efficiency and exhaust emissions.
2009-06-15
Technical Paper
2009-01-1880
Mikael Lindström, Hans-Erik Ångström
The fuel injection process plays an important role in the combustion and emission formation processes of the DI diesel engine. One important fuel spray characteristic is the spray impulse. The most commonly used method to measure fuel spray impulse is the impingement method where the fuel spray impinges perpendicularly on the surface of a force transducer. This work deals with the theoretical background of such measurements as well as with developing and testing some different impulse measurement setups. The measured impulse is compared to measurements of the instantaneous mass flow and theoretical flow calculations. When measuring the impulse by impingement on the transducer membrane a fuel temperature related measurement error was encountered. This problem was solved by gluing a strike plate to the transducer membrane. The plate shielded the membrane from direct contact with the fuel.
2009-06-15
Journal Article
2009-01-1881
A. A. Boretti, H. C. Watson
Direct Injection (DI) is believed to be one of the key strategies for maximizing the thermal efficiency of Spark Ignition (SI) engines and meet the ever-tightening emissions regulations. This paper explores the use of Liquefied Petroleum Gas (LPG) liquid phase fuel in a 1.5 liter SI four cylinder gasoline engine with double over head camshafts, four valves per cylinder, and centrally located DI injector. The DI injector is a high pressure, fast actuating injector enabling precise multiple injections of the finely atomized fuel sprays. With DI technology, the injection timing can be set to avoid fuel bypassing the engine during valve overlap into the exhaust system prior to combustion. The fuel vaporization associated with DI reduces combustion chamber and charge temperatures, thereby reducing the tendency for knocking. Fuel atomization quality supports an efficient combustion process.
2009-06-15
Technical Paper
2009-01-1886
U. S. Usinin, M. A. Grigoriev, K. M. Vinogradov, A. N. Gorojankin, S. P. Gladyshev
The electric drive with the synchronous electrical machine of independent excitation differs by high specific parameters, adaptability to manufacture, simplicity of a design, and reliability. These properties of the electric drive allow using it in heavy conditions of operation. In particular, it can be recommended to use in electrical vehicles. The electric motor for this electric drive can be executed with two separate stator windings. Therefore, there are additional benefits connected to an opportunity of change of geometry of an iron stator stamp of the given type motor. In this report, the principle of operation of the electric drive with control system is considered. The different variants of a stator design of the electrical machine are discussed. The stator design allows improve of the mass and weight parameters of the electric machine. For the offered stator designs, the comparison of specific parameters (relationship of the nominal torque to load current) is carried out.
2009-06-15
Technical Paper
2009-01-1889
Zhili Chen, Tomoya Iwashina
Since the mixture become relative lean and homogeneous when ignition occurs in PCI engines, NOx and PM can be reduced simultaneously. However, HC and CO emissions in PCI engines are higher by one order than conventional direct injection diesel engines. The influence factors of HC and CO emissions for conventional direct-injection diesel engines have been analyzed by a lot of studies. In spite of the mechanism of HC formation in PCI would different to conventional direct-injection diesel because of injection timing in PCI engine is considerably earlier than that of a conventional diesel engine, there are not many works on HC and CO emissions of PCI engine. In this study, the characteristics of HC and CO emissions in a PCI engine were investigated by changing combustion chamber geometry (cavity diameter), topland volume, and injection timing. At the same time, the simulations of spray and air-fuel mixture formation were conducted by using GTT code.
2009-06-15
Technical Paper
2009-01-1885
Daniel L. Flowers, Nick J. Killingsworth, Francisco Espinosa-Loza, Joel Martinez-Frias, Salvador M. Aceves, Miroslav Krstic, Robert Dibble
We have converted a Caterpillar 3406 natural gas spark ignited engine to HCCI mode and used it as a test bed for demonstrating advanced control methodologies. Converting the engine required modification of most engine systems: piston geometry, starting, fueling, boosting, and (most importantly) controls. We implemented a thermal management system consisting of a recuperator that transfers heat from exhaust to intake gases and a dual intake manifold that permits precise cylinder-by-cylinder ignition control. Advanced control methodologies are used for (1) minimizing cylinder-to-cylinder combustion timing differences caused by small variations in temperature or compression ratio; (2) finding the combustion timing that minimizes fuel consumption; and (3) tuning the controller parameters to improve transient response.
2009-06-15
Technical Paper
2009-01-1884
D. I. Handford, M. D. Checkel
Natural gas is a challenging fuel for HCCI engines because its single-stage ignition and rapid combustion make it difficult to optimize combustion timing over a significant load range. This study investigates direct injection of a pilot quantity of high-cetane fuel near TDC as a range extension and combustion control mechanism for natural gas HCCI engines. The EGR and load range is studied in a supercharged natural gas HCCI engine equipped with external EGR, intake heating and a direct injection system for n-heptane pilot fuel. The operating range and emissions are of primary interest and are compared between both the baseline HCCI engine with variable intake temperature and the direct injected HCCI (DI-HCCI) engine with constant intake temperature. Test results show the EGR and load range at fixed intake temperature can be extended using pilot direct injection.
Viewing 181 to 210 of 58639

Filter

  • Range:
    to:
  • Year: