Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

On the Investigation of Car Steady-State Cornering Equilibria and Drifting

2024-04-09
2024-01-2764
This paper proposes a thorough investigation of steady-state cornering equilibria for cars. Besides equilibria corresponding to normal driving behaviour - herein denoted as stable-normal turn, drifting is attracting increasing attention. When discussing drifting, it is typically assumed that yaw rate and steering angle have opposite signs, i.e. the driver is countersteering, and the rear axle is saturated. Interestingly, another unstable equilibrium is possible, herein referred to as unstable-normal turn. In this work, an attempt to give a comprehensive definition of drift is made. An inverse model is proposed to compute the driver inputs needed to perform a steady-state turn for a given radius and sideslip angle. The mathematical meaning of all equilibria is explored by linearizing the system and analyzing eigenvalues and eigenvectors of the resulting state matrices.
Technical Paper

Vehicle Yaw Dynamics Safety Analysis Methodology based on ISO-26262 Controllability Classification

2024-04-09
2024-01-2766
Complex chassis systems operate in various environments such as low-mu surfaces and highly dynamic maneuvers. The existing metrics for lateral motion hazard by Neukum [13] and Amberkar [17] have been developed and correlated to driver behavior against disturbances on straight line driving on a dry surface, but do not cover low-mu surfaces and dynamic driving scenarios which include both linear and nonlinear region of vehicle operation. As a result, an improved methodology for evaluating vehicle yaw dynamics is needed for safety analysis. Vehicle yaw dynamics safety analysis is a methodical evaluation of the overall vehicle controllability with respect to its yaw motion and change of handling characteristic.
Technical Paper

Compatibility between Handling Agility and Stability of Vehicle using Rear Wheel Steering with Dual-Link Actuators

2024-04-09
2024-01-2761
The experimental control findings of increasing the handling performance so that the yaw motion of the vehicle is nimble and stable utilizing the upgraded rear wheel steering system equipped with dual-link actuators are shown in this work. In most automobiles, the steering axis is well defined in front suspension. However, unless the vehicle's rear suspension is a sort of double wishbone, the steering axis is not clearly defined in regular multi-link rear suspensions. As a result, most current automobiles have a suspension geometry feature in which the camber and toe angles change at the same time when the assist link is changed to steer the back wheels. To create lateral force from the rear tire while preserving maximum tire grip, the dual-link actuators control for modifying the strokes of suspension links must keep the camber angle constant and adjust only the toe angle.
Technical Paper

Implementation of a Driver-in-the-Loop Methodology for Virtual Development of Semi-Active Dampers

2024-04-09
2024-01-2759
In today’s rapidly evolving automotive world, reduction of time to market has prime importance for a new product development. It is critical to have significant front-loading of the development activities to reduce development time while achieving best in class performance targets. Driver-in-the-loop (DIL) simulators have shown significant potential for achieving it, through real time subjective feedback at preliminary stages of the vehicle development. Recent advances in technology of driving simulators have enabled quite accurate representation steering and handling performance, also good prediction on primary ride and low frequency vibrations. In conventional damper development, the definition of the initial dampers tuning specifications typically requires a mule vehicle, or atleast, a comparable vehicle. However, this approach is associated with protracted iterations that consume substantial time and cost.
Technical Paper

Fourth Axle Steering Control of an 8x8 Scaled Electric Combat Vehicle

2024-04-09
2024-01-2763
With the rise in demand, advanced steering control and electric vehicle technology are rapidly developing in modern times. Due to a controller's role as a backbone for the modern vehicle, its study has become increasingly crucial. This research proposes a novel 4th axle steering (4AS) feedforward controller that utilizes the first, second and fourth axle steering control for an 8x8 scaled electric combat vehicle. The vehicle is tested using the predefined path following. The novel 4AS controller is then compared to the Ackermann steering condition at different speeds. In the scaled vehicle used for this research, each wheel is independently driven by an in-wheel motor, while the steering is carried out by linear actuators. Individual eight-wheel steering control systems are designed and installed on the scaled vehicle to evaluate the driving performance from low speed to high speed. The 4AS steering method is implemented to improve the stability of the scaled vehicle at high speeds.
Technical Paper

Recursive Least Square Method with Multiple Forgot Factor for Mass Estimation of Heavy Commercial Vehicle

2024-04-09
2024-01-2762
Heavy commercial vehicles have large variations in load and high centroid positions, so it is particularly important to obtain timely and accurate load information during driving. If the load information can be accurately obtained and the braking force of each axle can be distributed on this basis, the braking performance and safety of the entire vehicle can be improved. Heavy commercial vehicle load information is different from passenger vehicles, so it is particularly important to study commercial vehicles engaged in freight and passenger transportation. Presently, numerous research endeavors focus on evaluating the quality of passenger vehicles. However, heavy commercial vehicles exhibit notable distinctions compared to their passenger counterparts. Due to substantial variations in vehicle mass pre and post-loading, coupled with notable suspension deformations, significant changes are observed.
Technical Paper

Lyapunov Exponent Based Stability Analysis for a High-Dimensional Nonlinear Vehicle System Under Extreme Condition

2024-04-09
2024-01-2756
The vehicle stability assessment system is an indispensable component to ensure driving safety and enhance vehicle motion control, whether for automated or human-driven vehicles, especially in extreme operating conditions. However, the existing stability assessment methods tend to be conservative and often ignore the coupled longitudinal and lateral dynamics, as well as the nonlinear characteristics of tires. To evaluate the vehicle stability accurately and quickly, an 8-degree-of-freedom (DOF) vehicle dynamic model is constructed first, considering the nonlinear characteristics of tires through a physics-based approach. Subsequently, the vehicle and environment parameters are auto-tuned using Bayesian optimization with field test data. Based on the adjusted vehicle model, a Lyapunov exponent (LE) based vehicle stability analysis method is proposed to quantitatively assess the stability of the vehicle state and determine the corresponding stability boundary.
Technical Paper

A Simulation Model for an Online Corrective Look-Ahead Road Profiling System (CLARPS) for Active Suspension Applications

2024-04-09
2024-01-2758
Online road profiling capability is required for automotive active suspension systems to be realized in a commercial landscape. The challenges that impede the realization of these systems include a profiler’s ability to maintain an optimal resolution of the oncoming road profile (spatial frequency). Shifting of the profile measurement frame of reference due to body motion disturbances experienced by the vehicle also negatively impacts profiling capability. This work details the early development of a corrective look-ahead road profiling system (CLARPS) and its control logic. The CLARPS components are introduced and additional focus will be given to the development of the angle generating function (AGF) and how it drives the ability of the system to optimize look-ahead viewing angles for the best spatial frequency resolution of a road profile. The CLARPS simulation environment is demonstrated with numerical comparison of simulated road profiles at varying vehicle speeds.
Technical Paper

Analysis of Occupants by Seating Location, Restraint Use and Injury Risk in Tow-Away Crashes

2024-04-09
2024-01-2752
This study was conducted to assess the occupant restraint use and injury risks by seating position. The results were used to discuss the merit of selected warning systems. The 1989-2015 NASS-CDS and 2017-2021 CISS data were analyzed for light vehicles in all, frontal and rear tow-away crashes. The differences in serious injury risk (MAIS 3+F) were determined for front and rear seating positions, including the right, middle and left second-row seats. Occupancy and restraint use were determined by model year groups. Occupancy relative to the driver was 27% in the right-front (RF) and 17% in the second row in all crashes. About 39% of second-row passengers were in the left seat, 15% in the center seat and 47% in the right seat. Restraint use was lower in the second row compared to front seats. It was 43% in the right-front and 32% in the second-row seats in all crashes involving serious injury. Restraint use increased with model year groups.
Technical Paper

Compatibility Between Vehicle Seating Environments and Load Legs on Child Restraint Systems (CRS)

2024-04-09
2024-01-2751
Load legs on child restraint systems (CRS) protect pediatric occupants by bracing the CRS against the floor of the vehicle. Load legs reduce forward motion and help manage the energy of the CRS during a crash. As more CRS manufacturers in the United States (US) consider incorporating these safety features into their products, benchmark data are needed to guide their design and usage. The objective of this study is to develop benchmark geometrical data from both CRS and vehicle environments to help manufacturers to incorporate compatible load legs into the US market. A sample of vehicle environments (n=104 seating positions from n=51 vehicles, model years 2015 to 2022) and CRS with load legs (n=10) were surveyed. Relevant measurements were taken from each sample set to compile benchmark datasets. Corresponding dimensions were compared to assess where incompatibilities might occur.
Technical Paper

Study of Indian Road Traffic Accident Characteristics Using Clustering Analysis

2024-04-09
2024-01-2754
In 2021, 412,432 road accidents were reported in India, resulting in 153,972 deaths and 384,448 injuries. India has the highest number of road fatalities, accounting for 11% of the global road fatalities. Therefore, it is important to explore the underlying causes of accidents on Indian roads. The objective of this study is to identify the factors inherent in accidents in India using clustering analysis based on self-organizing maps (SOM). It also attempts to recommend some countermeasures based on the identified factors. The study used Indian accident data collected by members of ICAT-ADAC (International Centre for Automotive Technology - Accident Data Analysis Centre) under the ICAT-RNTBCI joint project approved by the Ministry of Heavy Industries, Government of India. 210 cases were collected from the National Highway between Jaipur and Gurgaon and 239 cases from urban and semi-urban roads around Chennai were used for the analysis.
Technical Paper

Observational Study of Passenger Seat Belt Usage Rates on Shuttle Buses

2024-04-09
2024-01-2753
In 1983, a seat belt use rate survey was published in which 9% shoulder belt use was observed for front-outboard passengers. Nearly forty years later the national estimate of seat belt use has achieved a record high of 91.6% belt use by adult front-seat passengers in 2022. In contrast, there have been very few studies conducted in order to determine seat belt use within large buses and motorcoaches. In 2013, the NHTSA published a final rule amending FMVSS 208 to require seat belts for each seating position in all new over-the-road buses. Beginning in 2016, newly manufactured buses were required to be equipped with lap and shoulder belts for each driver and passenger seat. Recent studies have reported that seat belt use on motorcoaches with relatively long routes was only 2.6%. Similarly, seat belt use in airport shuttle buses was reported to be only 1%. The present observational study was conducted to determine an updated seat belt usage rate of passengers on airport shuttle buses.
Technical Paper

A Study on the CFD-guided Gas Flow Field Plate Optimization of a PEM Fuel Cell with Wave Flow Channels

2024-04-09
2024-01-2747
The gas flow field design of proton exchange membrane (PEM) fuel cells is crucial to achieve high and stable performance. Since the mass transfer process of air is much more difficult than that of hydrogen, and the possible occurrence of flooding could make performance deteriorate rapidly, the gas flow in the cathode plate is especially important. In the present study, three-dimensional (3D) computational fluid dynamics (CFD) simulations were conducted to evaluate and optimize the performance of a baseline flow field pattern, which is characterized by wave flow channels. The active area is up to the same order as that of commercial products. To consider the turbulent flow, the Reynolds-averaged Navier-Stokes (RANS) approach coupled with the standard k-ω model was used. Moreover, a blend of the viscous and log-law solutions was implemented to calculate the specific dissipation rate in grids near the wall.
Technical Paper

Impact simulation of passenger electric vehicle’s battery pack protective structure for speed bump crossing event

2024-04-09
2024-01-2748
In the automotive industry, the electric vehicle is the new era, and companies are committed to reducing carbon emissions by electrification of their vehicles. In the development of electric vehicles, the battery is the central power source for all the parts of the vehicle. Usually, it is placed under the body because of its size and mass. So, it is important to protect battery cells from leakage and damage from obstacles. For on-road electric vehicles, speed bumps are one of the crucial obstacles. This paper investigates and analyses the protection of battery pack systems in electric vehicles while encountering speed bump profiles at different speeds. During the physical test on a speed bump, there is a possibility of bump hit on the battery pack system and it is necessary to ensure the structural safety of the battery pack systems. In this study, CAE method has been developed to validate the battery pack system in the event of a speed bump crossing.
Technical Paper

Structural Validation and Correlation of Inverter Gasket

2024-04-09
2024-01-2744
Inverter is the power electronics component that drives the electrical motor of the electrical driven compressor (EDC) and communicates with the car network. The main function of the inverter is to convert the direct current (DC) voltage of the car battery into alternating current (AC) voltage, which is used to drive the three-phase electric motor. In recent days, inverters are present in all automotive products due to electrification. Inverter contains a printed circuit board (PCB) and electronic components, which are mounted inside a mechanical housing and enclosed by a protective cover. The performance of the electrical drive depends upon the functioning of the inverter. There is a strong demand from the customer to withstand the harsh environmental and testing conditions during its lifetime such as leakage, dust, vibration, thermal tests etc.
Technical Paper

Reduction of Computational Efforts to Obtain Parasitic Capacitances Using FEM in Three-Phase Permanent Magnet Motors

2024-04-09
2024-01-2742
The rise in demand for electric and hybrid vehicles, the issue of bearing currents in electric motors has become increasingly relevant. These vehicles use inverters with high frequency switch that generates the common mode voltage and current, the main factor responsible for bearing issues. In the machine structure, there are some parasitic capacitances that exist inherently. They provide a low impedance path for the generated current, which flows through the machine bearing. Investigating this problem in practical scenarios during the design stage is costly and requires great effort to measure these currents. For this reason, a strategy of analysis aided by electromagnetic simulation software can achieve desired results in terms of complexity and performance. This work proposes a methodology using Ansys Maxwell software to simulate two-dimensional (2D) and three-dimensional (3D) model of a three-phase permanent magnet motor with eight poles.
Technical Paper

Virtual validation of water drip test for non-sealed automotive electronic products towards Ingress Protection requirements

2024-04-09
2024-01-2743
Modern automobiles are dependent on complex networks of electronic sensors and controls for efficient and safe operation. These electronic modules are tested for stringent environmental load conditions where product validation consists of one or a combination of loads such as Vibration, Mechanical Shock, Temperature, Water, Humidity, Dust, Chemicals, and Radiation. Exposure of electronics to water leads to many harmful effects resulting in the failure of electronic systems. Previously published technical paper [1] SAE 2023-01-0157 described a methodology to estimate risk in a humid environment, where water is dispersed in air as a gas phase. The present paper extends the scope of virtual validation using Computational Fluid Dynamics (CFD) simulation tools to an environment with water in the liquid phase. In this paper, a non-sealed automotive electronic module subjected to a water drip test is evaluated using the CFD model.
Technical Paper

CAE Transfer Path Analysis and Its Accuracy Evaluation Using a Validation Method

2024-04-09
2024-01-2740
In-cabin Noise at low frequency (due to engine or road excitation) is a major issue for NVH engineers. Usually, noise transfer function (NTF) analysis is carried out, due to absence of accurate actual loads for sound pressure level (SPL) analysis. But NTF analysis comes with the challenge of having too many paths (~20 trimmed body attachment locations: engine and suspension mounts, along with 3 directions for each) to work on, which is cumbersome. Physical test transfer path analysis (TPA) is a process of root cause analysis, by which critical contributing paths can be obtained for a problem peak frequency. In addition to that, loads at the attachment points of trimmed body of test vehicle can be derived. Both these outputs are conventionally used in CAE analysis to work on either NTF or SPL. The drawback of this conventional approach is that the critical bands and paths suggested are based on the problem peak frequency of test vehicle which may be different in CAE.
Technical Paper

Design and Simulation of Battery Enclosure for an Electric Vehicle Application

2024-04-09
2024-01-2738
Making a sturdy battery box or enclosure is one of the many challenging issues that the expansion of electrification entails. Many characteristics of an effective battery housing contribute to the safety of passengers and shield the battery from the harsh environment created by vibrations and shocks due to varying road profiles in the vehicle. This results in stress and deformations of different degrees. There is a need to understand and develop a correlation between structural performance and lightweight design of battery enclosure as this can increase the range of the drive and the life cycle of a battery pack. This paper investigates the following points: I) A conceptualized CAD model of battery enclosure is developed to understand the design parameters such as utilization of different material for strength and structural changes for performance against vibration and strength.
Technical Paper

Dynamic Simulation of Steering Crimp Ring Assembly Process Using CAE and its Correlation with Testing

2024-04-09
2024-01-2733
The process of assembling the bearing and crimp ring to the steering pinion shaft is intricate. The bearing is pressed into its position via the crimp ring, which is tipped inward and fully fitted into a groove on the pinion shaft. Only when the bearing is pressed to a low surface on the pinion shaft, the caulking force for the crimp ring is achieved. The final caulking distance for the crimp ring confirms the proper bearing position. Simulating this transient fitting process using CAE is a challenging topic. Key factors include controlling applied force, defining contact between bearing and pinion surface, and defining contact between crimp ring and bearing surface from full close to half open transition. The overall CAE process is validated through correlation with testing.
X