Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Investigations into the Effects of Thermal and Compositional Stratification on HCCI Combustion – Part II: Optical Engine Results

2009-04-20
2009-01-1106
The effect that thermally and compositionally stratified flowfields have on the spatial progression of iso-octane-fueled homogeneous charge compression ignition (HCCI) combustion were directly observed using highspeed chemiluminescence imaging. The stratified in-cylinder conditions were produced by independently feeding the intake valves of a four-valve engine with thermally and compositionally different mixtures of air, vaporized fuel, and argon. Results obtained under homogeneous conditions, acquired for comparison to stratified operation, showed a small natural progression of the combustion from the intake side to the exhaust side of the engine, a presumed result of natural thermal stratification created from heat transfer between the in-cylinder gases and the cylinder walls. Large differences in the spatial progression of the HCCI combustion were observed under stratified operating conditions.
Journal Article

Using PIV Measurements to Determine the Role of the In-Cylinder Flow Field for Stratified DISI Engine Combustion

2014-04-01
2014-01-1237
In a companion study [1], experimental observations in a stratified-charge DISI engine operated with late injection of E70 led to the formation of two hypotheses: (1) For highly stratified spray-guided combustion, the heat-release rate of the main combustion phase is primarily controlled by mixing rates and turbulence level associated with fuel-jet penetration. (2) During the main combustion phase, the role of the in-cylinder flow field generated by the intake and compression strokes is primarily its stochastic disturbance of the mixing and flow associated with the fuel jets, thereby causing cycle-to-cycle variations of the spray-guided stratified combustion. Here, these hypotheses are tested. An optical engine was operated skip fired at 1000 and 2000 rpm, and exhibited the same combustion properties observed in the steady-state all-metal engine tests.
Journal Article

Role of Engine Speed and In-Cylinder Flow Field for Stratified and Well-Mixed DISI Engine Combustion Using E70

2014-04-01
2014-01-1241
This study compares the role of the in-cylinder flow field for spray-guided stratified-charge combustion and for traditional well-mixed stoichiometric operation, both using E70 fuel. The in-cylinder flow field is altered by changing the engine speed between 1000 and 2000 rpm. The stratified operation with the ethanol blend enabled “head ignition” of the fuel sprays, thus minimizing the available fuel/air-mixing time prior to combustion, creating a highly stratified combustion event. For well-mixed stoichiometric operation, the heat-release rate (HRR) scales proportionally with engine speed due to increased in-cylinder turbulence, as is well-known from literature. In contrast, increasing the engine speed influences the stratified combustion process very differently. Ensemble-averaged over 500 cycles, the time-based HRR in kW remains comparatively unchanged as the engine speed increases. However, cyclic variability of the stratified combustion increases substantially with engine speed.
Technical Paper

Driver Classification of Shifting Strategies Using Machine Learning Algorithms

2020-09-15
2020-01-2241
The adequate dimensioning of drive train components such as gearbox, clutch and driveshaft presents a major technical task. The one of manual transmissions represents a special significance due to the customer’s ability of inducing high force, torque and thermic energy into the powertrain through direct mechanical interconnection of gearstick, clutch pedal and gearbox. Out of this, the question about how to capture behavior and strain of the components during real operation, as well as their objective evaluation evolves. Furthermore, the gained insights must be considered for designing and development. As a basis for the examination, measuring data from imposing driving tests are adduced. Therefore, a trial study has been conducted, using a representative circular course in the metropolitan area of Stuttgart, showing the average German car traffic. The more than 40 chosen drivers constitute the average driver in Germany with respect to age, gender and annual mileage.
Journal Article

Impact of Ice Formation in Diesel Fuel on Tier 4 Off-Road Engine Performance with High Efficiency Fuel Filtration

2015-09-29
2015-01-2817
The winter of 2013-2014 provided an opportunity to operate off-road vehicles in cold weather for extended time as part of a vehicle/tier 4 diesel engine validation program. An unexpected area of study was the performance of high efficiency, on engine, fuel filters during continuous vehicle operation in cold weather. During the program we observed unexpected premature fuel filter plugging as indicated by an increase in pressure drop across the filter while in service. Field and laboratory testing was completed at John Deere and Donaldson to understand the cause of filter plugging. Although conditions were found where winter fuel additives could cause plugging of high efficiency filters, premature filter plugging occurred even when testing with #1 diesel fuel. This fuel contained no additives and was used at temperatures well above its cloud point.
Journal Article

1-D+1-D PEM Fuel Cell Stack Model for Advanced Hardware-in-the-Loop Applications

2015-09-01
2015-01-1779
As part of a system model, a PEM fuel cell stack model is presented for functional tests and pre-calibration of control units on hardware-in-the-loop (HiL) test benches. From the basic idea to couple a 1-D membrane model with a spatially distributed abstraction of the gas channel, a real-time capable 1-D+1-D PEM FC stack model is constructed. Fundament for the HiL usage is an explicit formulation of the commonly implicit model equations. With that, not only calculation time can be reduced, but also model accuracy is preserved. A validation using test bench data emphasizes the accuracy of the model. Finally, a runtime and eigenvalue analysis of the stack model proves the real-time capability.
Journal Article

Development and Validation of the SAE J3052 High Pressure Differential Flow Rate Recommended Practice

2017-09-17
2017-01-2498
This paper describes the development work that went into the creation of the SAE J3052 “Brake Hydraulic Component Flow Rate Measurement at High Delta Pressure”, and also shows some example applications. The SAE J3052 recommended practice is intended to measure flow characteristics through brake hydraulic components and subsystems driven by pressure differentials above 1 bar, and was anticipated by the task force to be invoked for components and subsystems for which pressure response characteristics are critical for the operation of the system (such as service brake pressure response and stopping distance, or pressure rise rate of a single hydraulic circuit in response to an Electronic Stability Control command). Data generated by this procedure may be used as a direct assessment of the flow performance of a brake hydraulic component, or they may be used to build subsystem or system-level models.
Technical Paper

Improving Robotic Accuracy through Iterative Teaching

2020-03-10
2020-01-0014
Industrial robots have been around since the 1960s and their introduction into the manufacturing industry has helped in automating otherwise repetitive and unsafe tasks, while also increasing the performance and productivity for the companies that adopted the technology. As the majority of industrial robotic arms are deployed in repetitive tasks, the pose accuracy is much less of a key driver for the majority of consumers (e.g. the automotive industry) than speed, payload, energy efficiency and unit cost. Consequently, manufacturers of industrial robots often quote repeatability as an indication of performance whilst the pose accuracy remains comparatively poor. Due to their lack in accuracy, robotic arms have seen slower adoption in the aerospace industry where high accuracy is of utmost importance. However if their accuracy could be improved, robots offer significant advantages, being comparatively inexpensive and more flexible than bespoke automation.
Standard

ELECTRONIC FLIGHT INSTRUMENTS (EFI)

2013-06-01
CURRENT
ARINC725-2
This standard sets forth the features of a color EFI system for installation in commercial transport aircraft. The EFI provides display functions that include Attitude Director Indicator (ADI), Horizontal Situation Indicator (HSI), Air Data, Map display, Weather display, Radio Altitude data, Flight Control Mode annunciation, Flight Path information, and Flight Warning display.
Standard

INERTIAL REFERENCE SYSTEM

1999-03-19
CURRENT
ARINC704-7
IRS characteristics are defined in this standard. It defines the desired performance of inertial measuring devices and associated electronics specifically designed for installation in commercial transport aircraft. This system provides the basic outputs for aircraft angular rate and acceleration, and computed outputs of altitude, true heading, velocity and present position in a 10 MCU form factor.
Standard

ATTITUDE AND HEADING REFERENCE SYSTEM

1985-04-30
CURRENT
ARINC705-5
This standard describes the basic requirements for an AHRS specifically designed for installation in commercial transport aircraft. The AHRS is an attitude and heading sensor that provides outputs in digital form for guidance and display. The AHRS replaces the traditional vertical and directional gyros.
Standard

CONTROL/DISPLAY INTERFACES

1981-02-10
CURRENT
ARINC601
This Specification provides standards for the effective control of the environment for avionic equipment, including basic design standards for avionics equipment and its installation to assure suitable thermal interfaces, design criteria, and cooling appraisal.
Journal Article

High Efficiency, Hydro-Mechanical Passenger Vehicle Transmission using Fixed Displacement Pump/Motors and Digital Hydraulics

2012-04-16
2012-01-0624
It is widely accepted that the plug-in hybrid vehicle is the most economically viable near-term solution to the petroleum and CO₂ problems associated with passenger vehicles. The battery and electrics costs of gas/electric plug-in hybrid vehicles can be significantly reduced with the use of a hydraulic transmission and the implementation of hydraulic regenerative braking. This has not been done to date due to the unavailability of a low cost, reliable, compact, and efficient hydraulic transmission. This paper describes a conceptual design of such a transmission and evaluates its performance using the attributes of existing components. The main causes of the lack of past success with hydraulic transmissions are the many drawbacks of variable-displacement hydraulic pumps and motors. This transmission is based on fixed displacement pumps and motors to avoid these drawbacks.
Journal Article

Inverter Dead-Time Compensation up to the Field Weakening Region with Respect to Low Sampling Rates

2012-04-16
2012-01-0500
This report presents a new compensation method for distortions related to dead time, caused by B6-inverters with pulse-width-modulated output voltages. In spite of low sampling rates, the new method of compensation is effective at all ranges of rotation speed up to the field weakening region. No additional hardware is required for its implementation. The effectiveness of the new method has been shown experimentally. A description of the relevant distortions is given first to provide a basis for the development. This considers the field weakening region, and offers an illustrative method of quantifying the distortions. It is also shown that the use of compensation methods that do not take the sampling time into account leads to additional distortions. It is even possible that they exceed the distortions in an equivalent system without compensation.
Journal Article

Consumption Optimization in Battery Electric Vehicles by Autonomous Cruise Control using Predictive Route Data and a Radar System

2013-04-08
2013-01-0984
This paper presents an autonomous cruise control for battery electric vehicles. The presented approach is based on the usage of predictive route data which is extracted out of a digital map and a wide range radar system in order to capture vehicles in front. By using the predictive route data and the information of the radar system, the autonomous cruise control can control the vehicle's speed over a wide range of driving situations without any driver interaction. The main aim of the presented autonomous cruise control is to optimize the battery electric vehicle's energy consumption. The main idea is to use predictive route data in order to calculate a consumption optimal vehicle speed trajectory by means of online optimization. The benefits of the autonomous cruise control are shown by means of real test drives and measured data evaluation.
Technical Paper

Handling Qualities Results of an Initial Geared Flap Tilt Wing Piloted Simulation

1991-04-01
911201
An exploratory simulation study of a novel approach to pitch control for a tilt wing aircraft was conducted in 1990 on the NASA-Ames Vertical Motion Simulator. The purpose of the study was to evaluate and compare the handling qualities of both a conventional and a geared flap tilt wing control configuration. The geared flap is an innovative control concept which has the potential for reducing or eliminating the horizontal pitch control tail rotor or reaction jets required by prior tilt wing designs. The handling qualities results of the geared flap control configuration are presented in this paper and compared to the conventional (programmed flap) tilt wing control configuration. This paper also describes the geared flap concept, the tilt wing aircraft, the simulation model, the simulation facility and experiment setup, and the pilot evaluation tasks and procedures.
Technical Paper

Ceramic Coatings for Aluminum Engine Blocks

1991-09-01
911719
The trend toward lighter vehicles for improved performance has recently introduced the use of aluminum and plastic materials for vehicle bodies and drive trains. In particular, the aluminum alloy block for engine application is certain to reappear. The soft aluminum cylinder liner will require additional treatment before acceptance. Three possible approaches appear to solve the aluminum cylinder liner dilemma. These approaches are: 1. Use of high silicon aluminum such as the 390 aluminum. 2. Insert or cast steel liners into the aluminum engine block. 3. Ceramic coat the low cost standard aluminum engine block. Each has known advantages and disadvantages. It is the purpose of this paper to present the merits of Option 3, the ceramic coated aluminum cylinder bore from the standpoint of low weight, cost, and tribological effectiveness. The advantages of approaches (1) and (2) are obvious. High temperature after treatment of the ceramic engine components is not required.
Journal Article

Implementation of a Self-Learning Route Memory for Forward-Looking Driving

2008-04-14
2008-01-0197
In this paper it will be shown how a database containing information of the road characteristics of a frequently driven route can be automatically generated and continually updated in a vehicle during each drive. The contained information can be used as foresight information in predictive driving strategies. By using only drive train information, standard sensors (e.g. from ESC and ABS), and a GPS relevant road characteristics (curves, slopes, speed limits, etc) can be identified during the drive, stored in an on-board database, and used to optimize fuel consumption or driving comfort in subsequent trips along the route. The system is verified using a driving simulator with a 3D surround graphics system.
Journal Article

NOx-Reduction by Injection-Timing Retard in a Stratified-Charge DISI Engine using Gasoline and E85

2012-09-10
2012-01-1643
The lean-burn stratified-charge DISI engine has a strong potential for increased thermal efficiency compared to the traditional throttled SI engine. This experimental study of a spray-guided stratified-charge combustion system compares the engine response to injection-timing retard for gasoline and E85. Focus is on engine-out NO and soot, and combustion stability. The results show that for either fuel, injection-timing retard lowers the engine-out NO emissions. This is partly attributed to a combination of lower peak-combustion temperatures and shorter residence time at high temperatures, largely caused by a more retarded combustion phasing. However, for the current conditions using a single-injection strategy, the potential of NO reduction with gasoline is limited by both elevated soot emissions and the occurrence of misfire cycles. In strong contrast, when E85 fuel is used, the combustion system responds very well to injection-timing retard.
X