Refine Your Search

Topic

Search Results

Event

Attend - Innovations in Mobility: Aerospace Digital Summit

2024-04-25
Innovations in Mobility: Aerospace Digital Summitaerospace mobility leaders convene leverage cutting-edge technology, design, develop safety measures, integrate current regulations, suggest future policies, expand markets, diversify revenue streams.
Technical Paper

Considerations for Requirements and Specifications of a Digital Thread in Aircraft Data Life Cycle Management

2024-03-05
2024-01-1946
The aircraft lifecycle involves thousands of transactions and an enormous amount of data being exchanged across the stakeholders in the aircraft ecosystem. This data pertains to various aircraft life cycle stages such as design, manufacturing, certification, operations, maintenance, and disposal of the aircraft. All participants in the aerospace ecosystem want to leverage the data to deliver insight and add value to their customers through existing and new services while protecting their own intellectual property. The exchange of data between stakeholders in the ecosystem is involved and growing exponentially. This necessitates the need for standards on data interoperability to support efficient maintenance, logistics, operations, and design improvements for both commercial and military aircraft ecosystems. A digital thread defines an approach and a system which connects the data flows and represents a holistic view of an asset data across its lifecycle.
Book

Aerospace Standards Index - 2024

2024-02-12
This valuable resource lists all Aerospace Standards (AS), Aerospace Recommended Practices (ARP), Aerospace Information Reports (AIR), and Aerospace Resource Documents (ARD) published by SAE. Each listing includes title, subject, document number, key words, new and revised documents, and DODISS-adopted documents. AMS Index - Now Available!
Magazine

Aerospace & Defense Technology: February 2024

2024-02-08
Certified Machine Learning-Based Avionics: Unlocking Safer Revolutionizing Electronic Warfare: Unleashing the Power of High-Performance Software Defined Radios Deterministic and Modular Architecture for Embedded Vehicle Systems Approximating the Material Stresses and System Requirements for Hypersonic Flight Design Approaches for Established and Emerging RF Receiver Architectures Rydberg Technologies Shows Potential of Long-Range RF with Quantum Sensor at NetModX23 New Method to Measure Wind Speed Could Unlock Drones' Potential A fundamentally different approach to wind estimation using unmanned aircraft than the vast majority of existing methods. This method uses no on-board flow sensor and does not attempt to estimate thrust or drag forces. Report on Human Factors Issues Likely to Affect Air-Launched Effects This report reviews human factors research on the supervision of multiple unmanned vehicles (UVs) as it affects human integration with Air-Launched Effects (ALE).
Journal Article

A Study on Secured Unmanned Aerial Vehicle-Based Fog Computing Networks

2023-11-03
Abstract With the recent advancement in technologies, researchers worldwide have a growing interest in unmanned aerial vehicles (UAVs). The last few years have been significant in terms of its global awareness, adoption, and applications across industries. In UAV-aided wireless networks, there are some limitations in terms of power consumption, data computation, data processing, endurance, and security. So, the idea of UAVs and Edge or Fog computing together deals with the limitations and provides intelligence at the network’s edge, which makes it more valuable to use in emergency applications. Fog computing distributes data in a decentralized way and blockchain also works on the principle of decentralization. Blockchain, as a decentralized database, uses cryptographic methods including hash functions and public key encryption to secure the user information. It is a prominent solution to secure the user’s information in blocks and maintain privacy.
Magazine

Aerospace & Defense Technology: October 2023

2023-10-05
DoD to Deploy Thousands of Low Cost Autonomous Systems Under Replicator Program Top Productivity Improvement Tips for Manufacturing Turbine Discs FACE Technical Standard Offers MOSA Lessons for Safety-Critical Software in Any Sector Adamant: A Soon-to-be Open Source, Mission-Critical Flight Software Framework Written in Ada Benefits and Challenges of Direct-RF Sampling for Avionic Platforms More Airports Test RF as Counter Measure for UAS in Restricted Airspace Adapting U.S. Army Acquisition to Ensure the Reliability and Safety of Autonomous Vehicles This report presents several challenges that the U.S. Army will face in the transition to autonomous vehicles, challenges that are only magnified in the current acquisition environment with limited testing. Artificial intelligence algorithms introduce additional complexity, resulting in systems with a complex combination of human, machine, and autonomous controllers.
Magazine

Aerospace & Defense Technology: April 2023

2023-04-06
Breathing Life into Artificial Intelligence and Next Generation Autonomous Aerospace Systems Robotic Rotational Molding Creates New Opportunities for Military and Aerospace Applications Rim-Driven Electric Aircraft Propulsion High-Speed Midwave Infrared Cameras Enable Military Test Range Tracking System What Today's Advances in Radar Technology Mean for Testing and Training Tackling Ruggedization Challenges for RF Communications in Software Defined Radios AUVSI XPONENTIAL 2023 The Blueprint for Autonomy Multi-Scale Structuring of the Polar Ionosphere Understanding a radically new sensing capability for polar ionospheric science introduced by observational evidence recently provided by the electronically steerable Resolute Bay Incoherent Scatter Radar (RISR). Stepped-Frequency Distributed Radar for Through-the-Wall Sensing A technical analysis of the effectiveness of distributed radar for through-the-wall sensing applications.
Magazine

Aerospace & Defense Technology: September 2022

2022-09-01
The Sky is No Longer the Limit Celebrating 75 Years of Air Force Technology Air Force Technology Timeline Leveraging New Technologies for Mil/Aero Electronic Systems MOSA Enclosure Design for Military Systems Three Challenges to 5G's Military Success How to Specify and Select RF Filters Investigation of Requirements and Capabilities of Next-Generation Mine Warfare Unmanned Underwater Vehicles Model-based systems engineering (MBSE) tools, including functional flow block diagrams and functional hierarchies, are used to logically define mine countermeasure (MCM) UUV operations and support the development of alternative concepts of operations. On the Pulsed Laser Ablation of Metals and Semiconductors A comparison of effects across disparate experimental regimes through the study of pulsed laser ablation over several orders of magnitude in pulse duration, fluence, and material properties.
Research Report

Legal Issues Facing Automated Vehicles, Facial Recognition, and Privacy Rights

2022-07-28
EPR2022016
Facial recognition software (FRS) is a form of biometric security that detects a face, analyzes it, converts it to data, and then matches it with images in a database. This technology is currently being used in vehicles for safety and convenience features, such as detecting driver fatigue, ensuring ride share drivers are wearing a face covering, or unlocking the vehicle. Public transportation hubs can also use FRS to identify missing persons, intercept domestic terrorism, deter theft, and achieve other security initiatives. However, biometric data is sensitive and there are numerous remaining questions about how to implement and regulate FRS in a way that maximizes its safety and security potential while simultaneously ensuring individual’s right to privacy, data security, and technology-based equality.
Technical Paper

Medical Cargo Delivery using Blockchain Enabled Unmanned Aircraft Systems

2022-05-26
2022-26-0003
Significant growth of Unmanned Aerial Vehicles (UAV) has unlocked many services and applications opportunities in the healthcare sector. Aerial transportation of medical cargo delivery can be an effective and alternative way to ground-based transport systems in times of emergency. To improve the security and the trust of such aerial transportation systems, Blockchain can be used as a potential technology to manage, operate and monitor the entire process. In this paper, we present a blockchain network solution based on Ethereum for the transportation of medical cargo such as blood, medicines, vaccines, etc. The smart contract solution developed in solidity language was tested using the Truffle program. Ganache blockchain test network was employed to host the blockchain network and test the operation of the proposed blockchain model. The suitability of the model is validated in real-time using a UAV and all the flight data are captured and uploaded into the blockchain.
Standard

AIRCRAFT SERVER, COMMUNICATIONS, AND INTERFACE STANDARD

2021-11-10
CURRENT
ARINC679
ARINC Report 679 defines the functional characteristics of an airborne server that will support Electronic Flight Bags (EFBs) and similar peripherals used in the flight deck, cabin, and maintenance applications. The document defines how EFBs will efficiently, effectively, safely, and securely connect to the airborne server in a way that offer expanded capabilities to aircraft operators. The airborne server has two main functions, first to provide specific services to connected systems, and second to provide centralized security for the EFB and its data. This document is a functional airborne server definition. It does not define the physical characteristics of the server.
Standard

Determination of Cost Benefits from Implementing a Blockchain Solution

2021-08-19
CURRENT
ARP6984
This SAE Aerospace Recommended Practice (ARP) provides insights on how to perform a Cost Benefit Analysis (CBA) to determine the Return on Investment (ROI) that would result from implementing a blockchain solution to a new or an existing business process. The word “blockchain” refers to a method of documenting when data transactions occur using a distributed ledger with desired immutable qualities. The scope of the current document is on enterprise blockchain which gives the benefit of standardized cryptography, legal enforceability and regulatory compliance. The document analyzes the complexity involved with this technology, lists some of the different approaches that can be used for conducting a CBA, and differentiates its analysis depending on whether the application uses a public or a private distributed network.
Standard

TIMELY RECOVERY OF FLIGHT DATA (TRFD)

2021-08-06
CURRENT
ARINC681
The difficulty in locating crash sites has prompted international efforts for alternatives to quickly recover flight data. This document describes the technical requirements and architectural options for the Timely Recovery of Flight Data (TRFD) in commercial aircraft. ICAO and individual Civil Aviation Authorities (CAAs) levy these requirements. The ICAO Standards and Recommended Practices (SARPs) and CAA regulations cover both aircraft-level and on-ground systems. This report also documents additional system-level requirements derived from the evaluation of ICAO, CAA, and relevant industry documents and potential TRFD system architectures. It describes two TRFD architectures in the context of a common architectural framework and identifies requirements. This report also discusses implementation recommendations from an airplane-level perspective.
Magazine

Aerospace & Defense Technology: May 2021

2021-05-01
Powering Better Battlefield Drones Using Low-Frequency Broadband Sonar on UUVs Experimenting in Realistic Environments Gets NewTechnology to Warfighters Designing Rugged SWaP-Optimized MOSA Solutions for UUVs Does Your UAV Program Need a Transponder? Understanding the Requirements and Guidelines Developing New Anti-Drone Radar Technology Deceiving the Enemy: These Are the Drones You Are Looking For By developing UAVs for physical deception roles to shape an adversary's ability to visually observe and orient to situations, the US military can decrease risk to air and ground combatants during mission execution by causing adversaries to expend resources, delay their reactions, or react incorrectly to tactical situations.
Journal Article

Security Threat Modeling and Automated Analysis for System Design

2021-04-29
Abstract Despite more and more rigorous defense mechanisms in place for cyber-physical systems, cybercriminals are increasingly attacking systems for benefits using a variety of means including malware, phishing, ransomware, and denial of service. Cyberattacks could not only cause significant economic loss but also disastrous consequences for individuals and organizations. Therefore, it is advantageous to detect and fix potential cyber vulnerabilities before the system is fielded. To this end, this article presents a language, VERDICT, and a novel framework, Cyber Vulnerability Analysis Framework (CyVAF) to (i) define cyber threats and mitigation defenses based on system properties, (ii) detect cyber vulnerabilities of system architecture automatically, and also (iii) suggest mitigation defenses. VERDICT is developed as an annex to the Architecture Analysis and Design Language (AADL) but can also be used independently.
Magazine

Aerospace & Defense Technology: October 2020

2020-10-01
The Role of Autonomous Unmanned Ground Vehicle Technologies in Defense Applications Information Warfare - Staying Protected at the Edge Designing Connectivity Solutions for an Electric Aircraft Future Redesigning the Systems Engineering Process to Speed Development of E-Propulsion Aircraft Four RF Technology Trends You Need to Know for Satellite Communication Device Design Manufacturer Reduces Risk and Improves Quality of Military Radar Receivers Instrumentation for Fabrication and Testing of High-Speed Single-Rotor and Compound-Rotor Systems Precision data acquisition is required to generate a comprehensive set of measurements of the blade surface pressures, pitch link loads, hub loads, rotor wakes and performance of high-speed single-rotor and compound-rotor systems to support the development of next-generation rotorcraft.
Journal Article

Threat Identification and Defense Control Selection for Embedded Systems

2020-08-18
Abstract Threat identification and security analysis have become mandatory steps in the engineering design process of high-assurance systems, where successful cyberattacks can lead to hazardous property damage or loss of lives. This article describes a novel approach to perform security analysis on embedded systems modeled at the architectural level. The tool, called Security Threat Evaluation and Mitigation (STEM), associates threats from the Common Attack Pattern Enumeration and Classification (CAPEC) library with components and connections and suggests potential defense patterns from the National Institute of Standards and Technology (NIST) Special Publication (SP) 800-53 security standard. This article also provides an illustrative example based on a drone package delivery system modeled in AADL.
Magazine

Aerospace & Defense Technology: August 2020

2020-08-01
Reverse Engineering the Boeing E-3 Sentry's Secondary Flight Controls Vanadium - A Green Metal Critical to Aerospace and Clean Energy Thrust in Space - The Nuances of Thruster Valve Design 3D Printing Aerodynamic Improvements Cryogenic-Capable Isolators Improve the Performance of Millimeter-Wave Systems by Lowering Noise Levels Detection with Quantum Radar A new radar prototype utilizes quantum entanglement as a method of object detection. Preliminary Development of an Integrated Mobility, Lethality, and Survivability Soldier Performance Testing Platform Developing a methodology that incorporates objective measures of performance and is sensitive to changes in soldier-system equipment could help guide equipment manufacturers during product development and acquisition. Bore Elevation and Azimuth Measurement System (Beams) Newly developed laser apparatus verifies that the pointing accuracy requirement of a weapon's fire control system is met.
Journal Article

The Missing Link: Aircraft Cybersecurity at the Operational Level

2020-07-25
Abstract Aircraft cybersecurity efforts have tended to focus at the strategic or tactical levels without a clear connection between the two. ...CSSEP’s process model postulates that security is best achieved by a balance of cybersecurity, cyber resiliency, defensibility, and recoverability and that control is best established by developing security constraints versus attempting to find every vulnerability. ...CSSEP identifies the major functions needed to do effective aircraft cybersecurity and provides a flexible framework as the “missing link” to connect the strategic and tactical levels of aircraft cybersecurity.
X