Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Enabling the security of global time in software-defined vehicles (SGTS, MACsec)

2024-07-02
2024-01-2978
., driver assistance functions, intrusion detection system, vehicle diagnostics, external device authentication during vehicle diagnostics, vehicle-to-grid and so on). The cybersecurity attacks targeting the global time result in false time, accuracy degradation, and denial of service as stated in IETF RFC 7384.
Research Report

Cybersecurity and Digital Trust Issues in Connected and Automated Vehicles

2024-04-22
EPR2024009
On the other hand, the potential risks associated with CAV deployment related to technical vulnerabilities are safety and cybersecurity issues that may arise from flawed hardware and software. Cybersecurity and Digital Trust Issues in Connected and Automated Vehicles elaborates on these topics as unsettled cybersecurity and digital trust issues in CAVs and follows with recommendations to fill in the gaps in this evolving field. ...Cybersecurity and Digital Trust Issues in Connected and Automated Vehicles elaborates on these topics as unsettled cybersecurity and digital trust issues in CAVs and follows with recommendations to fill in the gaps in this evolving field. ...This report also highlights the importance of establishing robust cybersecurity protocols and fostering digital trust in these vehicles to ensure safe and secure deployment in our modern transportation system.
Technical Paper

Evaluating Network Security Configuration (NSC) Practices in Vehicle-Related Android Applications

2024-04-09
2024-01-2881
Android applications have historically faced vulnerabilities to man-in-the-middle attacks due to insecure custom SSL/TLS certificate validation implementations. In response, Google introduced the Network Security Configuration (NSC) as a configuration-based solution to improve the security of certificate validation practices. NSC was initially developed to enhance the security of Android applications by providing developers with a framework to customize network security settings. However, recent studies have shown that it is often not being leveraged appropriately to enhance security. Motivated by the surge in vehicular connectivity and the corresponding impact on user security and data privacy, our research pivots to the domain of mobile applications for vehicles. As vehicles increasingly become repositories of personal data and integral nodes in the Internet of Things (IoT) ecosystem, ensuring their security moves beyond traditional issues to one of public safety and trust.
Technical Paper

Cybersecurity Rating Framework and Its Application to J1939-91C Standard

2024-04-09
2024-01-2803
UNECE R155 explicitly references ISO/SAE 21434 and mandates a certified cybersecurity management system (CSMS) as a prerequisite for automotive manufacturers to achieve vehicle type approval and sell new vehicle types. ...However, the gap in the CSMS framework is a lack in a standardized system that provides guidance and common criteria for automakers to measure a vehicle’s level of compliance and compute a publicly accepted cybersecurity rating. To help establish increased consumer confidence, OEMs and smart mobility stakeholders could take additional proactive steps to ensure the safety and security of their products. ...This paper addresses the above requirement and discusses the cybersecurity rating framework (CSRF) that could establish a framework for rating vehicle cybersecurity by standardizing the measurement criteria, parameter vectors, process, and tools.
Technical Paper

Vehicle E/E Architecture and Key Technologies Enabling Software-Defined Vehicle

2024-04-09
2024-01-2035
This paper gives a definition of the SDV concept, provides views from different aspects, discusses the progress in vehicle E/E architecture, especially zone-based architecture with centralized computation, and various technologies including High-Performance Computing (HPC) platform, standardized vehicle software architecture, advanced onboard communication, Over-The-Air (OTA) update, and cybersecurity etc. that collectively enable the realization of SDV.
Technical Paper

The Operation Phase as the Currently Underestimated Phase of the (Safety and Legal) Product Lifecycle of Autonomous Vehicles for SAE L3/L4 – Lessons Learned from Existing European Operations and Development of a Deployment and Surveillance Blueprint

2023-12-29
2023-01-1906
Advanced Autonomous Vehicles (AV) for SAE Level 3 and Level 4 functions will lead to a new understanding of the operation phase in the overall product lifecycle. Regulations such as the EU Implementing Act and the German L4 Act (AFGBV) request a continuous field surveillance, the handling of critical E/E faults and software updates during operation. This is required to enhance the Operational Design Domain (ODD) during operation, offering Functions on Demand (FoD), by increasing software features within these autonomous vehicle systems over the entire digital product lifecycle, and to avoid and reduce downtime by a malfunction of the Autonomous Driving (AD) software stack.
Technical Paper

Access Control Requirements for Autonomous Robotic Fleets

2023-04-11
2023-01-0104
Access control enforces security policies for controlling critical resources. For V2X (Vehicle to Everything) autonomous military vehicle fleets, network middleware systems such as ROS (Robotic Operating System) expose system resources through networked publisher/subscriber and client/server paradigms. Without proper access control, these systems are vulnerable to attacks from compromised network nodes, which may perform data poisoning attacks, flood packets on a network, or attempt to gain lateral control of other resources. Access control for robotic middleware systems has been investigated in both ROS1 and ROS2. Still, these implementations do not have mechanisms for evaluating a policy's consistency and completeness or writing expressive policies for distributed fleets. We explore an RBAC (Role-Based Access Control) mechanism layered onto ROS environments that uses local permission caches with precomputed truth tables for fast policy evaluation.
Technical Paper

Deep Learning Based Automotive Requirements Analysis

2023-04-11
2023-01-0864
Automotive system functionalities spread over a wide range of sub-domains ranging from non-driving related components to complex autonomous driving related components. The requirements to design and develop these components span across software, hardware, firmware, etc. elements. The successful development of these components to achieve the needs from the stockholders requires accurate understanding and traceability of the requirements of these component systems. The high-level customer requirements transformation into low level granularity requires an efficient requirement engineer. The manual understanding of the customer requirements from the requirement documents are influenced by the context and the knowledge gap of the requirement engineer in understanding and transforming the requirements.
Technical Paper

Review on CAN Bus Protocol: Attacks, Difficulties, and Potential Solutions

2023-04-11
2023-01-0926
The new generation vehicles these days are managed by networked controllers. A large portion of the networks is planned with more security which has recently roused researchers to exhibit various attacks against the system. This paper talks about the liabilities of the Controller Area Network (CAN) inside In-vehicle communication protocol and a few potentials that could take due advantage of it. Moreover, this paper presents a few security measures proposed in the present examination status to defeat the attacks. In any case, the fundamental objective of this paper is to feature a comprehensive methodology known as Intrusion Detection System (IDS), which has been a significant device in getting network data in systems over many years. To the best of our insight, there is no recorded writing on a through outline of IDS execution explicitly in the CAN transport network system.
Technical Paper

An Adaptable Security by Design Approach for Ensuring a Secured Remote Monitoring Teleoperation (RMTO) of an Autonomous Vehicle

2023-04-11
2023-01-0579
The separation of cybersecurity considerations in RMTO is barely considered, as so far, most available research and activities are mainly focused on AV. ...The main focus of this paper is addressing RMTO cybersecurity utilising an adaptable security-by-design approach, although security-by-design is still in the infant state within automotive cybersecurity. ...The main focus of this paper is addressing RMTO cybersecurity utilising an adaptable security-by-design approach, although security-by-design is still in the infant state within automotive cybersecurity. An adaptable security-by-design approach for RMTO covers Security Engineering Life-cycle, Logical Security Layered Concept, and Security Architecture.
Technical Paper

Evaluation of Vehicle System Performance of an SAE J1939-91C Network Security Implementation

2023-04-11
2023-01-0041
CAN bus network proved to be efficient and dynamic for small compact cars as well as heavy-duty vehicles (HDV). However, HDVs are more susceptible to malicious attacks due to lack of security in their intra-vehicle communication protocols. SAE proposed a new standard named J1939-91C for CAN-FD networks which provides methods for establishing trust and securing mutual messages with optional encryption. J1939-91C ensures message authenticity, integrity, and confidentiality by implementing complex cryptographic operations including hash functions and random key generation. In this paper, the three main phases of J1939-91C, i.e., Network Formation, Rekeying, and Message Exchange, are simulated and tested on Electronic Control Units (ECUs) supporting CAN-FD network. Numerous test vectors were generated and validated to support SAE J1939-91C. The mentioned vectors were produced by simulating different encryption and hashing algorithms with variable message and key lengths.
Technical Paper

Identification and Verification of Attack-Tree Threat Models in Connected Vehicles

2022-12-22
2022-01-7087
As a result of the ever-increasing application of cyber-physical components in the automotive industry, cybersecurity has become an urgent topic. Adapting technologies and communication protocols like Ethernet and WiFi in connected vehicles yields many attack scenarios. ...Consequently, ISO/SAE 21434 and UN R155 (2021) define a standard and regulatory framework for automotive cybersecurity, Both documents follow a risk management-based approach and require a threat modeling methodology for risk analysis and identification. ...Initially, we transform cybersecurity guidelines to attack trees, and then we use their formal interpretations to assess the vehicle’s design.
Technical Paper

Research on the Development Path and Policy Recommendations of Vehicle Infrastructure Cooperation

2022-12-22
2022-01-7065
By looking into the vehicle-infrastructure cooperation (VIC) which is oriented towards intelligent, networked and integrated development, this paper analyzes and proposes the essence and development direction of Intelligent Vehicle Infrastructure Cooperation Systems (I-VICS). With an in-depth analysis of technologies of core importance to VIC and influence factors that constrain VIC development as a whole, the paper comes up with a technological route for VIC, and identifies a direction for vehicle-infrastructure cooperative development that progresses from primary to intermediate cooperation, then to advanced cooperation, and finally to full-fledged cooperation. Policy recommendations aiming at strengthening top-level design, building an integrated vehicle-infrastructure-cloud platform, expediting independence of key techs, building robust standards and regulations for VIC, enhancing workforce development as well as greater efforts at market promotion are put forward.
Research Report

Legal Issues Facing Automated Vehicles, Facial Recognition, and Privacy Rights

2022-07-28
EPR2022016
Facial recognition software (FRS) is a form of biometric security that detects a face, analyzes it, converts it to data, and then matches it with images in a database. This technology is currently being used in vehicles for safety and convenience features, such as detecting driver fatigue, ensuring ride share drivers are wearing a face covering, or unlocking the vehicle. Public transportation hubs can also use FRS to identify missing persons, intercept domestic terrorism, deter theft, and achieve other security initiatives. However, biometric data is sensitive and there are numerous remaining questions about how to implement and regulate FRS in a way that maximizes its safety and security potential while simultaneously ensuring individual’s right to privacy, data security, and technology-based equality.
X