Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Onboard Cybersecurity Diagnostic System for Connected Vehicles

2021-09-21
2021-01-1249
Here, we discuss the On-Board Diagnostic (OBD) regulations for next generation BEV/HEV, its vulnerabilities and cybersecurity threats that come with hacking. We propose three cybersecurity attack detection and defense methods: Cyber-Attack detection algorithm, Time-Based CAN Intrusion Detection Method and, Feistel Cipher Block Method. ...These control methods autonomously diagnose a cybersecurity problem in a vehicle’s onboard system using an OBD interface, such as OBD-II when a fault caused by a cyberattack is detected, All of this is achieved in an internal communication network structure.
Journal Article

Cybersecurity Vulnerabilities for Off-Board Commercial Vehicle Diagnostics

2023-04-11
2023-01-0040
The lack of inherent security controls makes traditional Controller Area Network (CAN) buses vulnerable to Machine-In-The-Middle (MitM) cybersecurity attacks. Conventional vehicular MitM attacks involve tampering with the hardware to directly manipulate CAN bus traffic.
Technical Paper

Research on Vehicle Cybersecurity Based on Dedicated Security Hardware and ECDH Algorithm

2017-09-23
2017-01-2005
Vehicle cybersecurity consists of internal security and external security. Dedicated security hardware will play an important role in car’s internal and external security communication. ...For certain AURIX MCU consisting of HSM, the experiment result shows that cheaper 32-bit HSM’s AES calculating speed is 25 times of 32-bit main controller, so HSM is an effective choice to realize cybersecurity. After comparing two existing methods that realize secure CAN communication, A Modified SECURE CAN scheme is proposed, and differences of the three schemes are analyzed.
Technical Paper

Wireless Charging for EV/HEV with Prescriptive Analytics, Machine Learning, Cybersecurity and Blockchain Technology: Ongoing and Future Trends

2019-04-02
2019-01-0790
Due to the rapid development in the technological aspect of the autonomous vehicle (AV), there is a compelling need for research in the field vehicle efficiency and emission reduction without affecting the performance, safety and reliability of the vehicle. Electric vehicle (EV) with rechargeable battery has been proved to be a practical solution for the above problem. In order to utilize the maximum capacity of the battery, a proper power management and control mechanism need to be developed such that it does not affect the performance, reliability and safety of vehicle. Different optimization techniques along with deterministic dynamic programming (DDP) approach are used for the power distribution and management control. The battery-operated electric vehicle can be recharged either by plug-in a wired connection or by the inductive mean (i.e. wirelessly) with the help of the electromagnetic field energy.
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. ...This research successfully met the four requirements and demonstrated that using ZT principles in an on-vehicle network greatly improved the cybersecurity posture with manageable impact to system performance and deployment.
Technical Paper

Trucking Forward: Intrusion Detection for SAE J1708/J1587 Networks in Heavy-Duty Vehicles

2024-04-09
2024-01-2805
While current cybersecurity endeavors in the heavy-duty (HD) vehicle space focus on securing conventional communication technologies such as the controller area network (CAN), there is a notable deficiency in defensive research concerning legacy technologies, particularly those utilized between trucks and trailers. ...To the best of current knowledge, this publication marks the first presentation of cybersecurity defense research on the SAE J1708/J1587 protocol stack.
Technical Paper

Intelligent Vehicle Monitoring for Safety and Security

2019-04-02
2019-01-0129
The caveat to these additional capabilities is issues like cybersecurity, complexity, etc. This paper is an exploration into FuSa and CAVs and will present a systematic approach to understand challenges and propose potential framework, Intelligent Vehicle Monitoring for Safety and Security (IVMSS) to handle faults/malfunctions in CAVs, and specifically autonomous systems.
Technical Paper

The Use of Interactive Web Based Program Applications for In-Depth Vehicle Noise Path Analysis

2017-06-05
2017-01-1868
The authors previously presented at SAE 2015, the use of acoustic diagnostic network algorithms (Acoustic DNA) for the measurement and analysis of noise paths in motor vehicles. To further the understanding of the huge amount of data created in this method, especially by the end user or customer, a secure web based application platform has been engineered. The current paper presents operating aspects of the web based approach, including cyber security, multi device accessibility and intuitive user interface together with an innovative optimization toolbox from which both noise sources and vehicle body systems can be modified to be target compliant.
Technical Paper

Managing Trust Along the CAN Bus

2022-03-29
2022-01-0119
Multiple approaches have been created to enhance intra-vehicle communications security over the past three decades since the introduction of the Controller Area Network (CAN) protocol. The twin pair differential-mode communications bus is tremendously robust in the face of interference, yet physical access to the bus offers a variety of potential attack vectors whereby false messages and/or denial of service are achievable. This paper evaluates extensions of a Physical-layer (PHY) common-mode watermark-based authentication technique recently developed to improve authentication on the CAN bus by considering the watermark as a side-channel communications means for high value information. We also propose and analyze higher layer algorithms, with benefits and pitfalls, for employing the watermark as a physical-layer firewall.
Technical Paper

The Study of Secure CAN Communication for Automotive Applications

2017-03-28
2017-01-1658
Cyber security is becoming increasingly critical in the car industry. Not only the entry points to the external world in the car need to be protected against potential attack, but also the on-board communication in the car require to be protected against attackers who may try to send unauthorized CAN messages. However, the current CAN network was not designed with security in mind. As a result, the extra measures have to be taken to address the key security properties of the secure CAN communication, including data integrity, authenticity, confidentiality and freshness. While integrity and authenticity can be achieved by using a relatively straightforward algorithms such as CMAC (Cipher-based Message Authentication Code) and Confidentiality can be handled by a symmetric encryption algorithm like AES128 (128-bit Advanced Encryption Standard), it has been recognized to be more challenging to achieve the freshness of CAN message.
Technical Paper

Evaluation of Vehicle System Performance of an SAE J1939-91C Network Security Implementation

2023-04-11
2023-01-0041
CAN bus network proved to be efficient and dynamic for small compact cars as well as heavy-duty vehicles (HDV). However, HDVs are more susceptible to malicious attacks due to lack of security in their intra-vehicle communication protocols. SAE proposed a new standard named J1939-91C for CAN-FD networks which provides methods for establishing trust and securing mutual messages with optional encryption. J1939-91C ensures message authenticity, integrity, and confidentiality by implementing complex cryptographic operations including hash functions and random key generation. In this paper, the three main phases of J1939-91C, i.e., Network Formation, Rekeying, and Message Exchange, are simulated and tested on Electronic Control Units (ECUs) supporting CAN-FD network. Numerous test vectors were generated and validated to support SAE J1939-91C. The mentioned vectors were produced by simulating different encryption and hashing algorithms with variable message and key lengths.
Technical Paper

Robustness Testing of a Watermarking CAN Transceiver

2022-03-29
2022-01-0106
To help address the issue of message authentication on the Controller Area Network (CAN) bus, researchers at Virginia Tech and Ford Motor Company have developed a proof-of-concept time-evolving watermark-based authentication mechanism that offers robust, cryptographically controlled confirmation of a CAN message's authenticity. This watermark is injected as a common-mode signal on both CAN-HI and CAN-LO bus voltages and has been proven using a low-cost software-defined radio (SDR) testbed. This paper extends prior analysis on the design and proof-of-concept to consider robustness testing over the range of voltages, both steady state drifts and transients, as are commonly witnessed within a vehicle. Overall performance results, along with a dynamic watermark amplitude control, validate the concept as being a practical near-term approach at improving authentication confidence of messages on the CAN bus.
Technical Paper

Evaluating Trajectory Privacy in Autonomous Vehicular Communications

2019-04-02
2019-01-0487
Autonomous vehicles might one day be able to implement privacy preserving driving patterns which humans may find too difficult to implement. In order to measure the difference between location privacy achieved by humans versus location privacy achieved by autonomous vehicles, this paper measures privacy as trajectory anonymity, as opposed to single location privacy or continuous privacy. This paper evaluates how trajectory privacy for randomized driving patterns could be twice as effective for autonomous vehicles using diverted paths compared to Google Map API generated shortest paths. The result shows vehicles mobility patterns could impact trajectory and location privacy. Moreover, the results show that the proposed metric outperforms both K-anonymity and KDT-anonymity.
Technical Paper

UAS Behaviour and Consistency Monitoring System for Countering Cyber Security Threats

2014-09-16
2014-01-2131
Upon their arrival, Unmanned Autonomous Systems (UAS) brought with them many benefits for those involved in a military campaign. They can use such systems to reconnoiter dangerous areas, provide 24-hr aerial security surveillance for force protection purposes or even attack enemy targets all the while avoiding friendly human losses in the process. Unfortunately, these platforms also carry the inherent risk of being built on innately vulnerable cybernetic systems. From software which can be tampered with to either steal data, damage or even outright steal the aircraft, to the data networks used for communications which can be jammed or even eavesdropped on to gain access to sensible information. All this has the potential to turn the benefits of UAS into liabilities and although the last decade has seen great advances in the development of protection and countermeasures against the described threats and beyond the risk still endures.
Journal Article

Towards a Cyber Assurance Testbed for Heavy Vehicle Electronic Controls

2016-09-27
2016-01-8142
Cyber assurance of heavy trucks is a major concern with new designs as well as with supporting legacy systems. Many cyber security experts and analysts are used to working with traditional information technology (IT) networks and are familiar with a set of technologies that may not be directly useful in the commercial vehicle sector. To help connect security researchers to heavy trucks, a remotely accessible testbed has been prototyped for experimentation with security methodologies and techniques to evaluate and improve on existing technologies, as well as developing domain-specific technologies. The testbed relies on embedded Linux-based node controllers that can simulate the sensor inputs to various heavy vehicle electronic control units (ECUs). The node controller also monitors and affects the flow of network information between the ECUs and the vehicle communications backbone.
X