Refine Your Search

Topic

Search Results

Journal Article

Cybersecurity Metrics for Automotive Systems

2021-04-06
2021-01-0138
With the increased need for cybersecurity in automotive systems due to the development of more advanced technologies and corresponding increased threat vectors, coupled with the upcoming International Organization for Standardization and the Society for Automotive Engineers (ISO/SAE) 21434 cybersecurity standard for automotive systems and cybersecurity regulations in The United Nations Economic Commission for Europe World Forum for Harmonization of Vehicle Regulations (UNECE WP.29), it is becoming increasingly important for auto manufacturers and suppliers to have a clear and common understanding and agreement of cybersecurity metrics for the development and deployment of vehicles. ...Cybersecurity for automotive systems is challenging, and one of the major challenges is how to measure this specific system property. ...With the increased need for cybersecurity in automotive systems due to the development of more advanced technologies and corresponding increased threat vectors, coupled with the upcoming International Organization for Standardization and the Society for Automotive Engineers (ISO/SAE) 21434 cybersecurity standard for automotive systems and cybersecurity regulations in The United Nations Economic Commission for Europe World Forum for Harmonization of Vehicle Regulations (UNECE WP.29), it is becoming increasingly important for auto manufacturers and suppliers to have a clear and common understanding and agreement of cybersecurity metrics for the development and deployment of vehicles.
Technical Paper

Enhanced Penetration Testing for Automotive Cybersecurity

2022-12-16
2022-01-7123
Automotive electronics and enterprise IT are converging and thus open the doors for advanced hacking. With their immediate safety impact, cyberattacks on such systems will endanger passengers. Today, there are various methods of security verification and validation in the automotive industry. However, we realize that vulnerability detection is incomplete and inefficient with classic security testing. In this article, we show how an enhanced Grey-Box Penetration Test (GBPT) needs less test cases while being more effective in terms of coverage and indicating less false positives.
Technical Paper

Cyber-security for Engine ECUs: Past, Present and Future

2015-09-01
2015-01-1998
In this paper, we outline past, present and future applications of automotive security for engine ECUs. Electronic immobilizers and anti-tuning countermeasures have been used for several years. Recently, OEMs and suppliers are facing more and more powerful attackers, and as a result, have introduced stronger countermeasures based on hardware security. Finally, with the advent of connected cars, it is expected that many things that currently require a physical connection will be done remotely in a near future. This includes remote diagnostics, reprogramming and engine calibration.
Technical Paper

Research on Vehicle Cybersecurity Based on Dedicated Security Hardware and ECDH Algorithm

2017-09-23
2017-01-2005
Vehicle cybersecurity consists of internal security and external security. Dedicated security hardware will play an important role in car’s internal and external security communication. ...For certain AURIX MCU consisting of HSM, the experiment result shows that cheaper 32-bit HSM’s AES calculating speed is 25 times of 32-bit main controller, so HSM is an effective choice to realize cybersecurity. After comparing two existing methods that realize secure CAN communication, A Modified SECURE CAN scheme is proposed, and differences of the three schemes are analyzed.
Journal Article

A Global Survey of Standardization and Industry Practices of Automotive Cybersecurity Validation and Verification Testing Processes and Tools

2023-11-16
Abstract The United Nation Economic Commission for Europe (UNECE) Regulation 155—Cybersecurity and Cybersecurity Management System (UN R155) mandates the development of cybersecurity management systems (CSMS) as part of a vehicle’s lifecycle. ...Due to the focus of R155 and its suggested implementation guideline, ISO/SAE 21434:2021—Road Vehicle Cybersecurity Engineering, mainly centering on the alignment of cybersecurity risk management to the vehicle development lifecycle, there is a gap in knowledge of proscribed activities for validation and verification testing. ...An inherent component of the CSMS is cybersecurity risk management and assessment. Validation and verification testing is a key activity for measuring the effectiveness of risk management, and it is mandated by UN R155 for type approval.
Training / Education

Introduction to Car Hacking with CANbus

2024-11-13
Therefore, engineers should ensure that systems are designed free of unreasonable risks to motor vehicle safety, including those that may result due to existence of potential cybersecurity vulnerabilities. The automotive industry is making vehicle cybersecurity an organizational priority.
Magazine

Automotive Engineering: June 2022

2022-06-02
Supplier Eye Inflation ignites another supplier squeeze Toyota reinvesting in collaborative safety research SAE and NREL partner to strengthen EV-charging cybersecurity Expanding the 'bubble' of cabin acoustics 2022 Ford F-150 Lightning redefines the pickup paradigm GM's Hummer EV is like nothing else
Technical Paper

Applying Concolic Testing to the Automotive Domain

2024-04-09
2024-01-2802
Symbolic code execution is a powerful cybersecurity testing approach that facilitates the systematic exploration of all paths within a program to uncover previously unknown cybersecurity vulnerabilities. ...Symbolic code execution is a powerful cybersecurity testing approach that facilitates the systematic exploration of all paths within a program to uncover previously unknown cybersecurity vulnerabilities. This is achieved through a Satisfiability Modulo Theory (SMT) solver, which operates on symbolic values for program inputs instead of using their concrete counterparts.
Magazine

Automotive Engineering: February 2017

2017-02-02
SAE Standards News VS committees fully engaged on cybersecurity. Honda's new 10-speed is a slick shifter SAE Level 3 'hand off' challenging AI researchers Lightweight door module aims to trim vehicle weight Exclusive first drive: Torotrak's V-Charge technology New 10-speed auto delights in 2017 Ford F-150 Power and more underscore 2018 Toyota Camry I.D.
Technical Paper

Future of Automotive Embedded Hardware Trust Anchors (AEHTA)

2022-03-29
2022-01-0122
In conjunction with an increasing number of related laws and regulations (such as UNECE R155 and ISO 21434), these drive security requirements in different domains and areas. 2 In this paper we examine the upcoming trends in EE architectures and investigate the underlying cyber-security threats and corresponding security requirements that lead to potential requirements for “Automotive Embedded Hardware Trust Anchors” (AEHTA).
Standard

E/E Data Link Security

2019-07-12
CURRENT
J2186_201907
This SAE Recommended Practice establishes a uniform practice for protecting vehicle components from "unauthorized" access through a vehicle data link connector (DLC). The document defines a security system for motor vehicle and tool manufacturers. It will provide flexibility to tailor systems to the security needs of the vehicle manufacturer. The vehicle modules addressed are those that are capable of having solid state memory contents accessed or altered through the data link connector. Improper memory content alteration could potentially damage the electronics or other vehicle modules; risk the vehicle compliance to government legislated requirements; or risk the vehicle manufacturer's security interests. This document does not imply that other security measures are not required nor possible.
Journal Article

A Novel Assessment and Administration Method of Autonomous Vehicle

2020-04-14
2020-01-0708
As a promising strategic industry group that is rapidly evolving around the world, autonomous vehicle is entering a critical phase of commercialization from demonstration to end markets. The global automotive industry and governments are facing new common topics and challenges brought by autonomous vehicle, such as how to test, assess, and administrate the autonomous vehicle to ensure their safe running in real traffic situations and proper interactions with other road users. Starting from the facts that the way to autonomous driving is the process of a robot or a machine taking over driving tasks from a human. This paper summarizes the main characteristics of autonomous vehicle which are different from traditional one, then demonstrates the limitations of the existing certification mechanism and related testing methods when applied to autonomous vehicle.
Journal Article

Simple Cryptographic Key Management Scheme of the Electronic Control Unit in the Lifecycle of a Vehicle

2020-12-31
Abstract Connecting vehicles to various network services increases the risk of in-vehicle cyberattacks. For automotive industries, the supply chain for assembling a vehicle consists of many different organizations such as component suppliers, system suppliers, and car manufacturers (CMs). Moreover, once a vehicle has shipped from the factory of the CM, resellers, dealers, and owners of the vehicle may add and replace the optional authorized and third-party equipment. Such equipment may have serious security vulnerabilities that may be targeted by a malicious attacker. The key management system of a vehicle must be applicable to all use cases. We propose a novel key management system adaptable to the electronic control unit (ECU) lifecycle of a vehicle. The scope of our system is not only the vehicle product line but also the third-party vendors of automotive accessories and vehicle maintenance facilities, including resellers, dealers, and vehicle users.
Technical Paper

The Study of Secure CAN Communication for Automotive Applications

2017-03-28
2017-01-1658
Cyber security is becoming increasingly critical in the car industry. Not only the entry points to the external world in the car need to be protected against potential attack, but also the on-board communication in the car require to be protected against attackers who may try to send unauthorized CAN messages. However, the current CAN network was not designed with security in mind. As a result, the extra measures have to be taken to address the key security properties of the secure CAN communication, including data integrity, authenticity, confidentiality and freshness. While integrity and authenticity can be achieved by using a relatively straightforward algorithms such as CMAC (Cipher-based Message Authentication Code) and Confidentiality can be handled by a symmetric encryption algorithm like AES128 (128-bit Advanced Encryption Standard), it has been recognized to be more challenging to achieve the freshness of CAN message.
Standard

Security for Plug-In Electric Vehicle Communications

2018-02-15
CURRENT
J2931/7_201802
This SAE Information Report J2931/7 establishes the security requirements for digital communication between Plug-In Electric Vehicles (PEV), the Electric Vehicle Supply Equipment (EVSE) and the utility, ESI, Advanced Metering Infrastructure (AMI) and/or Home Area Network (HAN).
Standard

Hardware Protected Security for Ground Vehicles

2020-02-10
CURRENT
J3101_202002
Access mechanisms to system data and/or control is a primary use case of the hardware protected security environment (hardware protected security environment) during different uses and stages of the system. The hardware protected security environment acts as a gatekeeper for these use cases and not necessarily as the executor of the function. This section is a generalization of such use cases in an attempt to extract common requirements for the hardware protected security environment that enable it to be a gatekeeper. Examples are: Creating a new key fob Re-flashing ECU firmware Reading/exporting PII out of the ECU Using a subscription-based feature Performing some service on an ECU Transferring ownership of the vehicle Some of these examples are discussed later in this section and some have detailed sections of their own. This list is by no means comprehensive.
Technical Paper

Robustness Testing of a Watermarking CAN Transceiver

2022-03-29
2022-01-0106
To help address the issue of message authentication on the Controller Area Network (CAN) bus, researchers at Virginia Tech and Ford Motor Company have developed a proof-of-concept time-evolving watermark-based authentication mechanism that offers robust, cryptographically controlled confirmation of a CAN message's authenticity. This watermark is injected as a common-mode signal on both CAN-HI and CAN-LO bus voltages and has been proven using a low-cost software-defined radio (SDR) testbed. This paper extends prior analysis on the design and proof-of-concept to consider robustness testing over the range of voltages, both steady state drifts and transients, as are commonly witnessed within a vehicle. Overall performance results, along with a dynamic watermark amplitude control, validate the concept as being a practical near-term approach at improving authentication confidence of messages on the CAN bus.
X