Refine Your Search

Topic

Author

Search Results

Journal Article

A Centrally Managed Identity-Anonymized CAN Communication System*

2018-05-16
Abstract Identity-Anonymized CAN (IA-CAN) protocol is a secure CAN protocol, which provides the sender authentication by inserting a secret sequence of anonymous IDs (A-IDs) shared among the communication nodes. To prevent malicious attacks from the IA-CAN protocol, a secure and robust system error recovery mechanism is required. This article presents a central management method of IA-CAN, named the IA-CAN with a global A-ID, where a gateway plays a central role in the session initiation and system error recovery. Each ECU self-diagnoses the system errors, and (if an error happens) it automatically resynchronizes its A-ID generation by acquiring the recovery information from the gateway. We prototype both a hardware version of an IA-CAN controller and a system for the IA-CAN with a global A-ID using the controller to verify our concept.
Journal Article

A Comprehensive Attack and Defense Model for the Automotive Domain

2019-01-17
Abstract In the automotive domain, the overall complexity of technical components has increased enormously. Formerly isolated, purely mechanical cars are now a multitude of cyber-physical systems that are continuously interacting with other IT systems, for example, with the smartphone of their driver or the backend servers of the car manufacturer. This has huge security implications as demonstrated by several recent research papers that document attacks endangering the safety of the car. However, there is, to the best of our knowledge, no holistic overview or structured description of the complex automotive domain. Without such a big picture, distinct security research remains isolated and is lacking interconnections between the different subsystems. Hence, it is difficult to draw conclusions about the overall security of a car or to identify aspects that have not been sufficiently covered by security analyses.
Technical Paper

A Controller Area Network Bus Identity Authentication Method Based on Hash Algorithm

2021-07-14
2021-01-5077
With the development of vehicle intelligence and the Internet of Vehicles, how to protect the safety of the vehicle network system has become a focus issue that needs to be solved urgently. The Controller Area Network (CAN) bus is currently a very widely used vehicle-mounted bus, and its security largely determines the degree of vehicle-mounted information security. The CAN bus lacks adequate protection mechanisms and is vulnerable to external attacks such as replay attacks, modifying attacks, and so on. On the basis of the existing work, this paper proposes an authentication method that combines Hash-based Message Authentication Code (HMAC)-SHA256 and Tiny Encryption Algorithm (TEA) algorithms. This method is based on dynamic identity authentication in challenge/response made and combined with the characteristics of the CAN bus itself as it achieves the identity authentication between the gateway and multiple electronic control units (ECUs).
Journal Article

A Systematic Mapping Study on Security Countermeasures of In-Vehicle Communication Systems

2021-11-16
Abstract The innovations of vehicle connectivity have been increasing dramatically to enhance the safety and user experience of driving, while the rising numbers of interfaces to the external world also bring security threats to vehicles. Many security countermeasures have been proposed and discussed to protect the systems and services against attacks. To provide an overview of the current states in this research field, we conducted a systematic mapping study (SMS) on the topic area “security countermeasures of in-vehicle communication systems.” A total of 279 papers are identified based on the defined study identification strategy and criteria. We discussed four research questions (RQs) related to the security countermeasures, validation methods, publication patterns, and research trends and gaps based on the extracted and classified data. Finally, we evaluated the validity threats and the whole mapping process.
Journal Article

Accelerated Secure Boot for Real-Time Embedded Safety Systems

2019-07-08
Abstract Secure boot is a fundamental security primitive for establishing trust in computer systems. For real-time safety applications, the time taken to perform the boot measurement conflicts with the need for near instant availability. To speed up the boot measurement while establishing an acceptable degree of trust, we propose a dual-phase secure boot algorithm that balances the strong requirement for data tamper detection with the strong requirement for real-time availability. A probabilistic boot measurement is executed in the first phase to allow the system to be quickly booted. This is followed by a full boot measurement to verify the first-phase results and generate the new sampled space for the next boot cycle. The dual-phase approach allows the system to be operational within a fraction of the time needed for a full boot measurement while producing a high detection probability of data tampering.
Technical Paper

Access Control Requirements for Autonomous Robotic Fleets

2023-04-11
2023-01-0104
Access control enforces security policies for controlling critical resources. For V2X (Vehicle to Everything) autonomous military vehicle fleets, network middleware systems such as ROS (Robotic Operating System) expose system resources through networked publisher/subscriber and client/server paradigms. Without proper access control, these systems are vulnerable to attacks from compromised network nodes, which may perform data poisoning attacks, flood packets on a network, or attempt to gain lateral control of other resources. Access control for robotic middleware systems has been investigated in both ROS1 and ROS2. Still, these implementations do not have mechanisms for evaluating a policy's consistency and completeness or writing expressive policies for distributed fleets. We explore an RBAC (Role-Based Access Control) mechanism layered onto ROS environments that uses local permission caches with precomputed truth tables for fast policy evaluation.
Article

Addressing configuration controls in an era of multiple security frameworks

2019-07-04
 Sometimes mandatory, often voluntary, security frameworks are created to provide federal and commercial organizations with an effective roadmap for securing information technology (IT) systems. The goal is to reduce risk levels and prevent or mitigate cyberattacks. To accomplish this task, security frameworks typically provide a series of documented, agreed upon, and understood policies, procedures, and processes necessary to secure the confidentiality, integrity, and availability of information systems and data.
Journal Article

Anomaly-Based Intrusion Detection Using the Density Estimation of Reception Cycle Periods for In-Vehicle Networks

2018-05-16
Abstract The automotive industry intends to create new services that involve sharing vehicle control information via a wide area network. In modern vehicles, an in-vehicle network shares information between more than 70 electronic control units (ECUs) inside a vehicle while it is driven. However, such a complicated system configuration can result in security vulnerabilities. The possibility of cyber-attacks on vehicles via external services has been demonstrated in many research projects. As advances in vehicle systems (e.g., autonomous drive) progress, the number of vulnerabilities to be exploited by cyber-attacks will also increase. Therefore, future vehicles need security measures to detect unknown cyber-attacks. We propose anomaly-based intrusion detection to detect unknown cyber-attacks for the Control Area Network (CAN) protocol, which is popular as a communication protocol for in-vehicle networks.
Journal Article

Assuring Vehicle Update Integrity Using Asymmetric Public Key Infrastructure (PKI) and Public Key Cryptography (PKC)

2020-08-24
Abstract Over the past forty years, the Electronic Control Unit (ECU) technology has grown in both sophistication and volume in the automotive sector, and modern vehicles may comprise hundreds of ECUs. ECUs typically communicate via a bus-based network architecture to collectively support a broad range of safety-critical capabilities, such as obstacle avoidance, lane management, and adaptive cruise control. However, this technology evolution has also brought about risks: if ECU firmware is compromised, then vehicle safety may be compromised. Recent experiments and demonstrations have shown that ECU firmware is not only poorly protected but also that compromised firmware may pose safety risks to occupants and bystanders.
Magazine

Automotive Engineering: August 2023

2023-08-03
3D, no waiting! Two companies' latest techniques take additive manufacturing to the next level. Reducing the battery materials supply risk "Adjacent" strategies such as improving vehicle efficiency and advancing promising chemistries can mitigate the risks associated with today's favored battery materials. A formula for real-world experience Student engineers soak up the lessons from an army of auto-industry and racing volunteers at Formula SAE Michigan. Editorial It's about more than a connector Supplier Eye The New Wild West SAE to standardize Tesla's NACS charging connector Report: Suppliers need more info sooner on OEM EV plans Mazda again producing rotary engines Toyota to build new battery lab in Michigan New Lexus SUVs: GX for show, TX for dough? VW introduces seminal ID.Buzz in three-row layout Spotlight: 3D Printing/Additive Manufacturing Equipment & Software
Magazine

Automotive Engineering: February 2017

2017-02-02
SAE Standards News VS committees fully engaged on cybersecurity. Honda's new 10-speed is a slick shifter SAE Level 3 'hand off' challenging AI researchers Lightweight door module aims to trim vehicle weight Exclusive first drive: Torotrak's V-Charge technology New 10-speed auto delights in 2017 Ford F-150 Power and more underscore 2018 Toyota Camry I.D.
Magazine

Automotive Engineering: July/August 2022

2022-08-01
R1T Exposed! A comprehensive teardown of Rivian's pioneering electric pickup reveals praiseworthy build quality, innovative thinking…and some lapses in manufacturability. EVs drive NVH materials innovation Skateboard platforms, high-frequency motor noise push lower dB thresholds and new countermeasure solutions. Optimizing design for additive manufacturing Avoiding the pitfalls of 3D printing requires knowing the process limitations - and how to work around them. An expert at a leading AM specialist shares insights on getting it right. Real-time processors help drive the zonal E/E revolution With its new generation of software-compatible processors, NXP aims to accelerate systems consolidation and performance.
Magazine

Automotive Engineering: June 2022

2022-06-02
Supplier Eye Inflation ignites another supplier squeeze Toyota reinvesting in collaborative safety research SAE and NREL partner to strengthen EV-charging cybersecurity Expanding the 'bubble' of cabin acoustics 2022 Ford F-150 Lightning redefines the pickup paradigm GM's Hummer EV is like nothing else
Magazine

Automotive Engineering: March 2017

2017-03-02
Thought leadership at WCX17 Lucid Motors' David Moseley: EV or ICE, "It is all physics" New eye on the road One of the industry's hottest tech suppliers is blazing the autonomy trail by crowd-sourcing safe routes and using AI to learn to negotiate the road. Mobileye's co-founder and CTO explains. Hard, slick and ready to roll A tough, self-renewing catalyst coating developed at Argonne National Laboratory provides unprecedented friction and wear protection for vehicle powertrains, the inventors claim. Sensor ICs, semiconductors and safety To achieve ISO 26262 compliance, engineering practices must be taken to a higher level. The following insights may prove valuable for getting there. New VCR targets 40% BTE Variable-compression ratio with VVA from France's MCE-5.
X