Refine Your Search

Topic

Search Results

Book

9th AVL International Commercial Powertrain Conference (2017)

2017-05-21
Organized in cooperation with SAE International, AVL’s International Commercial Powertrain Conference- ICPC, happens every two years. It is the premier forum for truck, agricultural and construction equipment manufacturers to discuss powertrain technology challenges and solutions across their industries. This event offers a unique opportunity for engineers to address the synergy effects and distinctive characteristics of commercial vehicles, agricultural tractors and non-road vehicles, and industrial machinery. In 2017, the 9th ICPC focused on alternative powertrain technologies and innovations improving operating efficiency. These proceedings focus on: • Future challenges for engines and emissions • Smart Technologies Changing Farming • Cyber Physical Systems in Agriculture Business • OEM View of the Future of the Construction Machinery Industry • Powertrain Developments • CO2 Reduction • CVT Transmission Platform Technology • Autonomous and Connected Trucks
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. ...This research successfully met the four requirements and demonstrated that using ZT principles in an on-vehicle network greatly improved the cybersecurity posture with manageable impact to system performance and deployment.
Best Practice

AVSC Best Practice for Interactions Between ADS-DVs and Vulnerable Road Users (VRUs)

2022-08-09
CURRENT
AVSC00009202208
AVSC Best Practice for Interactions Between ADS-DVs and Vulnerable Road Users (VRUs) AVSC00009202208 establishes common terminology and a baseline understanding of the challenges posed, and framework to evaluate automated driving system-dedicated vehicle (ADS-DV) interactions with VRUs. This best practice can facilitate communication among the industry and public, help calibrate expectations of all traffic participants, and improve broader acceptance of SAE level 4 and level 5 ADS-equipped vehicles.
Best Practice

AVSC Information Report for Change Risk Management

2023-04-12
CURRENT
AVSC00010202304
AVSC Information Report for Change Risk Management AVSC00010202304 provides a process for change risk management for fleet-operated ADS-DVs using level 4 or 5 automation. The document addresses risks resulting from planned and unplanned changes in an ADS-DV design and/or operation. This information report is based on the concept of risk-informed decision-making. Making risk management decisions such as safety and change management, safety analysis, and safety assurance are especially applicable when moving from concept to production intent for the ADS-DV. Change Risk Management (CRM) does not replace best practices or other methods for managing safety anomalies or change management processes. It may instead be viewed as an additional resource that elaborates on how safety anomaly management and change management can be performed.
Standard

CAN FD Data Link Layer

2021-03-22
HISTORICAL
J1939-22_202103
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Standard

CAN FD Data Link Layer

2023-04-25
WIP
J1939-22
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Standard

CAN FD Data Link Layer

2021-07-16
HISTORICAL
J1939-22_202107
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Standard

CAN FD Data Link Layer

2022-09-08
CURRENT
J1939-22_202209
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Best Practice

CSPR Framework Technical Report

2023-01-04
CURRENT
SMSOLUTIONS0123
SMSOLUTIONS0123 represents the work of a team of policy and technical leaders from over a dozen forward-leaning organizations in the ground vehicle industry and government. When asked where Sustainable Mobility Solutions could best apply the capabilities SAE has developed over a century, the SMS group responded without hesitation: address EV charging system failure. The group determined to aggregate charging session data with the view to create a consistent data dictionary and analysis practice. Adopting agile work practices, it studied these data, vetting and iterating its solution with the objective of producing a technical report in approximately half the time required in normal standardization. The resulting document, EV Charging Infrastructure: Charging System Performance Reporting, is informing work by the U.S. Department of Energy and Departments of Energy and Transportation Joint Office, as well as OEMs and suppliers.
Technical Paper

Challenges with the Introduction of X-By-Wire Technologies to Passenger Vehicles and Light Trucks in regards to Functional Safety, Cybersecurity and Availability

2023-04-11
2023-01-0581
Classic vehicle production had limitations in bringing the driving commands to the actuators for vehicle motion (engine, steering and braking). Steering columns, hydraulic tubes or steel cables needed to be placed between the driver and actuator. Change began with the introduction of e-gas systems. Mechanical cables were replaced by thin, electric signal wires. The technical solutions and legal standardizations for addressing the steering and braking systems, were not defined at this time. Today, OEMs are starting E/E-Architecture transformations for manifold reasons and now have the chance to remove the long hydraulic tubes for braking and the solid metal columns used for steering. X-by-wire is the way forward and allows for higher Autonomous Driving (AD) levels for automated driving vehicles. This offers new opportunities to design the vehicle in-cabin space. This paper will start with the introduction of x-by-wire technologies.
Journal Article

Cybersecurity Considerations for Heavy Vehicle Event Data Recorders

2018-12-14
Abstract Trust in the digital data from heavy vehicle event data recorders (HVEDRs) is paramount to using the data in legal contests. Ensuring the trust in the HVEDR data requires an examination of the ways the digital information can be attacked, both purposefully and inadvertently. The goal or objective of an attack on HVEDR data will be to have the data omitted in a case. To this end, we developed an attack tree and establish a model for violating the trust needed for HVEDR data. The attack tree provides context for mitigations and also for functional requirements. A trust model is introduced as well as a discussion on what constitutes forensically sound data. The main contribution of this article is an attack tree-based model of both malicious and accidental events contributing to compromised event data recorder (EDR) data. A comprehensive list of mitigations for HVEDR systems results from this analysis.
Journal Article

Cybersecurity Vulnerabilities for Off-Board Commercial Vehicle Diagnostics

2023-04-11
2023-01-0040
The lack of inherent security controls makes traditional Controller Area Network (CAN) buses vulnerable to Machine-In-The-Middle (MitM) cybersecurity attacks. Conventional vehicular MitM attacks involve tampering with the hardware to directly manipulate CAN bus traffic.
Book

Cybersecurity for Commercial Vehicles

2018-08-28
It delivers details on key subject areas including: • SAE International Standard J3061; the cybersecurity guidebook for cyber-physical vehicle systems • The differences between automotive and commercial vehicle cybersecurity. • Forensics for identifying breaches in cybersecurity. • Platooning and fleet implications. • Impacts and importance of secure systems for today and for the future. ...This book provides a thorough view of cybersecurity to encourage those in the commercial vehicle industry to be fully aware and concerned that their fleet and cargo could be at risk to a cyber-attack. ...It delivers details on key subject areas including: • SAE International Standard J3061; the cybersecurity guidebook for cyber-physical vehicle systems • The differences between automotive and commercial vehicle cybersecurity. • Forensics for identifying breaches in cybersecurity. • Platooning and fleet implications. • Impacts and importance of secure systems for today and for the future.
Book

Energy in the 21st Century (2nd Edition)

2004-01-01
This book, in its second edition, examines the energy sources that play a vital role in society today, as well as those that may be the primary energy sources of tomorrow. From our reliance on fossil fuels to the quest for energy independence, and the environmental issues that follow each decision, this book delves into the most prominent energy issues of our time. Armed with this information, the reader can think critically about the direction they want this world to take. Contents: Brief History of Energy Consumption Fossil Energy - Coal Fossil Energy - Oil and Gas Peak Oil Nuclear Energy Renewable Energy - Solar Energy Renewable Energy - Wind Energy Renewable Energy - Energy from Water Renewable Energy - Bioenergy and Synfuels Energy Carrier, Energy Storage and Hybrid Energy Systems Electricity Generation and Distribution Energy Economics Future Issues - Geopolitics of Energy Future Issues - Energy Forecasts
Journal Article

Ensuring Fuel Economy Performance of Commercial Vehicle Fleets Using Blockchain Technology

2019-04-02
2019-01-1078
In the past, research on blockchain technology has addressed security and privacy concerns within intelligent transportation systems for critical V2I and V2V communications that form the backbone of Internet of Vehicles. Within trucking industry, a recent trend has been observed towards the use of blockchain technology for operations. Industry stakeholders are particularly looking forward to refining status quo contract management and vehicle maintenance processes through blockchains. However, the use of blockchain technology for enhancing vehicle performance in fleets, especially while considering the fact that modern-day intelligent vehicles are prone to cyber security threats, is an area that has attracted less attention. In this paper, we demonstrate a case study that makes use of blockchains to securely optimize the fuel economy of fleets that do package pickup and delivery (P&D) in urban areas.
Article

Europe’s blockchain-based Smart E-Mobility Challenge will conclude this May in Germany

2019-05-07
TIoTA, an open software consortium of over 50 members organized to support the creation of a secure, scalable, interoperable, and trusted IoT ecosystem, began the E-Mobility Challenge to link IoT devices with consumers and stakeholder companies such as operators and service, communication, and payment providers within the preexisting European electric vehicle ecosystem.
X