Refine Your Search

Topic

Author

Search Results

Journal Article

A Centrally Managed Identity-Anonymized CAN Communication System*

2018-05-16
Abstract Identity-Anonymized CAN (IA-CAN) protocol is a secure CAN protocol, which provides the sender authentication by inserting a secret sequence of anonymous IDs (A-IDs) shared among the communication nodes. To prevent malicious attacks from the IA-CAN protocol, a secure and robust system error recovery mechanism is required. This article presents a central management method of IA-CAN, named the IA-CAN with a global A-ID, where a gateway plays a central role in the session initiation and system error recovery. Each ECU self-diagnoses the system errors, and (if an error happens) it automatically resynchronizes its A-ID generation by acquiring the recovery information from the gateway. We prototype both a hardware version of an IA-CAN controller and a system for the IA-CAN with a global A-ID using the controller to verify our concept.
Journal Article

A Comprehensive Attack and Defense Model for the Automotive Domain

2019-01-17
Abstract In the automotive domain, the overall complexity of technical components has increased enormously. Formerly isolated, purely mechanical cars are now a multitude of cyber-physical systems that are continuously interacting with other IT systems, for example, with the smartphone of their driver or the backend servers of the car manufacturer. This has huge security implications as demonstrated by several recent research papers that document attacks endangering the safety of the car. However, there is, to the best of our knowledge, no holistic overview or structured description of the complex automotive domain. Without such a big picture, distinct security research remains isolated and is lacking interconnections between the different subsystems. Hence, it is difficult to draw conclusions about the overall security of a car or to identify aspects that have not been sufficiently covered by security analyses.
Technical Paper

A Controller Area Network Bus Identity Authentication Method Based on Hash Algorithm

2021-07-14
2021-01-5077
With the development of vehicle intelligence and the Internet of Vehicles, how to protect the safety of the vehicle network system has become a focus issue that needs to be solved urgently. The Controller Area Network (CAN) bus is currently a very widely used vehicle-mounted bus, and its security largely determines the degree of vehicle-mounted information security. The CAN bus lacks adequate protection mechanisms and is vulnerable to external attacks such as replay attacks, modifying attacks, and so on. On the basis of the existing work, this paper proposes an authentication method that combines Hash-based Message Authentication Code (HMAC)-SHA256 and Tiny Encryption Algorithm (TEA) algorithms. This method is based on dynamic identity authentication in challenge/response made and combined with the characteristics of the CAN bus itself as it achieves the identity authentication between the gateway and multiple electronic control units (ECUs).
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. ...This research successfully met the four requirements and demonstrated that using ZT principles in an on-vehicle network greatly improved the cybersecurity posture with manageable impact to system performance and deployment.
Journal Article

Accelerated Secure Boot for Real-Time Embedded Safety Systems

2019-07-08
Abstract Secure boot is a fundamental security primitive for establishing trust in computer systems. For real-time safety applications, the time taken to perform the boot measurement conflicts with the need for near instant availability. To speed up the boot measurement while establishing an acceptable degree of trust, we propose a dual-phase secure boot algorithm that balances the strong requirement for data tamper detection with the strong requirement for real-time availability. A probabilistic boot measurement is executed in the first phase to allow the system to be quickly booted. This is followed by a full boot measurement to verify the first-phase results and generate the new sampled space for the next boot cycle. The dual-phase approach allows the system to be operational within a fraction of the time needed for a full boot measurement while producing a high detection probability of data tampering.
Article

Addressing configuration controls in an era of multiple security frameworks

2019-07-04
 Sometimes mandatory, often voluntary, security frameworks are created to provide federal and commercial organizations with an effective roadmap for securing information technology (IT) systems. The goal is to reduce risk levels and prevent or mitigate cyberattacks. To accomplish this task, security frameworks typically provide a series of documented, agreed upon, and understood policies, procedures, and processes necessary to secure the confidentiality, integrity, and availability of information systems and data.
Magazine

Aerospace & Defense Technology: August 2020

2020-08-01
Reverse Engineering the Boeing E-3 Sentry's Secondary Flight Controls Vanadium - A Green Metal Critical to Aerospace and Clean Energy Thrust in Space - The Nuances of Thruster Valve Design 3D Printing Aerodynamic Improvements Cryogenic-Capable Isolators Improve the Performance of Millimeter-Wave Systems by Lowering Noise Levels Detection with Quantum Radar A new radar prototype utilizes quantum entanglement as a method of object detection. Preliminary Development of an Integrated Mobility, Lethality, and Survivability Soldier Performance Testing Platform Developing a methodology that incorporates objective measures of performance and is sensitive to changes in soldier-system equipment could help guide equipment manufacturers during product development and acquisition. Bore Elevation and Azimuth Measurement System (Beams) Newly developed laser apparatus verifies that the pointing accuracy requirement of a weapon's fire control system is met.
Magazine

Aerospace & Defense Technology: December 2022

2022-12-01
Why are Aerospace & Defense Companies Embracing Additive Manufacturing? Simplifying Power Design with Modular Architectures The Role of DevSecOps in Modern Edge Systems Making Machines Curious Designing Multi-Channel Microwave Radio Systems Using Optical Interconnects Solving Military Satellite, Radar and 5G Communications Challenges with GaN-on-SiC MMIC Power Amplifiers Advanced Airborne Defensive Laser for Incorporation on Strike Fighter Aircraft A technical and operational analysis of an airborne "hard-kill" Ytterbium fiber laser-based anti-missile system for use on strike fighters. Additive Manufacturing Utilizing a Novel In-Line Mixing System for Design of Functionally Graded Ceramic Composites Exploring the development of a direct ink writing system with multimaterial and in-line mixing capabilities for printing inks composed of high solids-loaded ceramic particulate suspensions.
Magazine

Aerospace & Defense Technology: June 2019

2019-06-01
Eyes in the Sky Rugged High-Speed Cameras Capture Critical Flight Test Video Data Panoramic Thermal Imaging Technology A New Concept in Naval Defense Coating Technology Enables Effective Missile Countermeasures FACE™ - Future Airborne Capability Environment Diminishing U.S. Combat Superiority Drives New Software Development Requirements Broadband 1.2- and 2.4-mm Gallium Nitride (GaN) Power Amplifier Designs Multi-Agent RF Propagation Simulator Electrical Characterization of Crystalline UO2, THO2 and U0.71TH0.29O2 Evaluating the suitability of advanced alloys for use in uranium-based neutron detectors. ONR Short Pulse Research, Evaluation and non-SWaP Demonstration for C-sUAV Study Research project is designed to map small unmanned aerial vehicle (sUAV) effects space, empirically and by simulation, as a function of high power microwave (HPM) waveform to develop effective countermeasures.
Magazine

Aerospace & Defense Technology: September 2022

2022-09-01
The Sky is No Longer the Limit Celebrating 75 Years of Air Force Technology Air Force Technology Timeline Leveraging New Technologies for Mil/Aero Electronic Systems MOSA Enclosure Design for Military Systems Three Challenges to 5G's Military Success How to Specify and Select RF Filters Investigation of Requirements and Capabilities of Next-Generation Mine Warfare Unmanned Underwater Vehicles Model-based systems engineering (MBSE) tools, including functional flow block diagrams and functional hierarchies, are used to logically define mine countermeasure (MCM) UUV operations and support the development of alternative concepts of operations. On the Pulsed Laser Ablation of Metals and Semiconductors A comparison of effects across disparate experimental regimes through the study of pulsed laser ablation over several orders of magnitude in pulse duration, fluence, and material properties.
Magazine

Aerospace & Defense Technology: September 2023

2023-09-07
How Thunderbolt 4 Helps Bring Fault-Tolerant, Distributed Systems to Market Delivering Operational Energy to Enhance Warfighter Capability Optoelectronic Analog Signal Transmission Takes Center Stage Amidst Aerospace and Defense Innovation Shaking Outside the Box to Advance Flight Research An Introduction to Quantum Computing How Laser Communications Innovation is Finally Coming of Age and Driving Innovation in Defense Spatial Calibration for Accurate Long Distance Measurement Using Infrared Cameras A new spatial calibration procedure has been introduced for infrared optical systems developed for cases where camera systems are required to be focused at distances beyond 100 meters. Towards Greater Sensitivity: A Brief FTIR and Infrared-Based Cavity Ring Down Spectroscopy Comparative Study A presentation of work comparing efficacy of a traditional IR method used as a standard within the U.S.
Magazine

Aerospace Engineering & Manufacturing 2010-06-23

2010-06-23
Fast-track propulsion testing Whether it is compressor refinement or complete test programs for next-generation aircraft, the level of propulsion system development in Europe seems to be ever-increasing.
Article

Air mobility innovations take center stage at Aerospace Systems and Technology Conference 2018

2018-11-06
Hundreds of aerospace executives, engineers, scientists, and academics are gathering in London this week for Aerospace Systems and Technology Conference (ASTC) 2018 from SAE International in Warrendale, Pennsylvania. Discussions during the three-day industry event center on the theme of innovating air mobility. Aerospace thought leaders are at ASTC discussing current challenges, the latest enabling technologies, and future opportunities, including those related to urban air mobility (UAM) and supersonic aircraft.
Journal Article

Anomaly-Based Intrusion Detection Using the Density Estimation of Reception Cycle Periods for In-Vehicle Networks

2018-05-16
Abstract The automotive industry intends to create new services that involve sharing vehicle control information via a wide area network. In modern vehicles, an in-vehicle network shares information between more than 70 electronic control units (ECUs) inside a vehicle while it is driven. However, such a complicated system configuration can result in security vulnerabilities. The possibility of cyber-attacks on vehicles via external services has been demonstrated in many research projects. As advances in vehicle systems (e.g., autonomous drive) progress, the number of vulnerabilities to be exploited by cyber-attacks will also increase. Therefore, future vehicles need security measures to detect unknown cyber-attacks. We propose anomaly-based intrusion detection to detect unknown cyber-attacks for the Control Area Network (CAN) protocol, which is popular as a communication protocol for in-vehicle networks.
Journal Article

Assuring Vehicle Update Integrity Using Asymmetric Public Key Infrastructure (PKI) and Public Key Cryptography (PKC)

2020-08-24
Abstract Over the past forty years, the Electronic Control Unit (ECU) technology has grown in both sophistication and volume in the automotive sector, and modern vehicles may comprise hundreds of ECUs. ECUs typically communicate via a bus-based network architecture to collectively support a broad range of safety-critical capabilities, such as obstacle avoidance, lane management, and adaptive cruise control. However, this technology evolution has also brought about risks: if ECU firmware is compromised, then vehicle safety may be compromised. Recent experiments and demonstrations have shown that ECU firmware is not only poorly protected but also that compromised firmware may pose safety risks to occupants and bystanders.
X