Refine Your Search

Topic

Author

Search Results

Event

2024-04-23
Event

2022 COMVEC™

2024-04-23
COMVEC™ conference is the only North American event that addresses vehicles and equipment spanning on-highway, off-highway, agricultural, construction, industrial, military, and mining sectors.
Journal Article

A Comprehensive Attack and Defense Model for the Automotive Domain

2019-01-17
Abstract In the automotive domain, the overall complexity of technical components has increased enormously. Formerly isolated, purely mechanical cars are now a multitude of cyber-physical systems that are continuously interacting with other IT systems, for example, with the smartphone of their driver or the backend servers of the car manufacturer. This has huge security implications as demonstrated by several recent research papers that document attacks endangering the safety of the car. However, there is, to the best of our knowledge, no holistic overview or structured description of the complex automotive domain. Without such a big picture, distinct security research remains isolated and is lacking interconnections between the different subsystems. Hence, it is difficult to draw conclusions about the overall security of a car or to identify aspects that have not been sufficiently covered by security analyses.
Journal Article

A Comprehensive Risk Management Approach to Information Security in Intelligent Transport Systems

2021-05-05
Abstract Connected vehicles and intelligent transportation systems are currently evolving into highly interconnected digital environments. Due to the interconnectivity of different systems and complex communication flows, a joint risk analysis for combining safety and security from a system perspective does not yet exist. We introduce a novel method for joint risk assessment in the automotive sector as a combination of the Diamond Model, Failure Mode and Effects Analysis (FMEA), and Factor Analysis of Information Risk (FAIR). These methods have been sequentially composed, which results in a comprehensive risk management approach to information security in an intelligent transport system (ITS). The Diamond Model serves to identify and structurally describe threats and scenarios, the widely accepted FMEA provides threat analysis by identifying possible error combinations, and FAIR provides a quantitative estimation of probabilities for the frequency and magnitude of risk events.
Technical Paper

A Comprehensive Training Approach for Automotive Cybersecurity Engineering

2024-04-09
2024-01-2800
A significant milestone in advancing cybersecurity within the automotive industry is the release of the first international standard for automotive cybersecurity ISO/SAE 21434:2021 ‘Road Vehicles — Cybersecurity Engineering’. A recently published type approval regulation for automotive cybersecurity (UN R155) is also tailored for member countries of the UNECE WP.29 alliance. ...Thus, the challenges for embedded automotive systems engineers are increasing while frameworks, tools and shared concepts for cybersecurity engineering and training are scarce. Hence, cybersecurity training in the automotive domain necessitates an understanding of domain-specific intricacies and the unique challenges at the intersection of cybersecurity and embedded systems engineering, elevating the need for improving the skill set and knowledge of automotive cybersecurity engineers. ...Hence, cybersecurity training in the automotive domain necessitates an understanding of domain-specific intricacies and the unique challenges at the intersection of cybersecurity and embedded systems engineering, elevating the need for improving the skill set and knowledge of automotive cybersecurity engineers. This paper delves into an automotive cybersecurity training concept aimed at enhancing the proficiency of development engineers.
Technical Paper

A Controller Area Network Bus Identity Authentication Method Based on Hash Algorithm

2021-07-14
2021-01-5077
With the development of vehicle intelligence and the Internet of Vehicles, how to protect the safety of the vehicle network system has become a focus issue that needs to be solved urgently. The Controller Area Network (CAN) bus is currently a very widely used vehicle-mounted bus, and its security largely determines the degree of vehicle-mounted information security. The CAN bus lacks adequate protection mechanisms and is vulnerable to external attacks such as replay attacks, modifying attacks, and so on. On the basis of the existing work, this paper proposes an authentication method that combines Hash-based Message Authentication Code (HMAC)-SHA256 and Tiny Encryption Algorithm (TEA) algorithms. This method is based on dynamic identity authentication in challenge/response made and combined with the characteristics of the CAN bus itself as it achieves the identity authentication between the gateway and multiple electronic control units (ECUs).
Journal Article

A Deep Neural Network Attack Simulation against Data Storage of Autonomous Vehicles

2023-09-29
Abstract In the pursuit of advancing autonomous vehicles (AVs), data-driven algorithms have become pivotal in replacing human perception and decision-making. While deep neural networks (DNNs) hold promise for perception tasks, the potential for catastrophic consequences due to algorithmic flaws is concerning. A well-known incident in 2016, involving a Tesla autopilot misidentifying a white truck as a cloud, underscores the risks and security vulnerabilities. In this article, we present a novel threat model and risk assessment (TARA) analysis on AV data storage, delving into potential threats and damage scenarios. Specifically, we focus on DNN parameter manipulation attacks, evaluating their impact on three distinct algorithms for traffic sign classification and lane assist.
Journal Article

A Study on Secured Unmanned Aerial Vehicle-Based Fog Computing Networks

2023-11-03
Abstract With the recent advancement in technologies, researchers worldwide have a growing interest in unmanned aerial vehicles (UAVs). The last few years have been significant in terms of its global awareness, adoption, and applications across industries. In UAV-aided wireless networks, there are some limitations in terms of power consumption, data computation, data processing, endurance, and security. So, the idea of UAVs and Edge or Fog computing together deals with the limitations and provides intelligence at the network’s edge, which makes it more valuable to use in emergency applications. Fog computing distributes data in a decentralized way and blockchain also works on the principle of decentralization. Blockchain, as a decentralized database, uses cryptographic methods including hash functions and public key encryption to secure the user information. It is a prominent solution to secure the user’s information in blocks and maintain privacy.
Article

AIA predicts flying air taxis, supersonic air travel, and space industry for 2050

2019-03-15
In the “What’s Next for Aerospace and Defense: A Vision for 2050” study, AIA, New York City-based McKinsey & Company, and other industry partners reveal a comprehensive 30-year, Industry 4.0 forecast of air travel and spaceflight based on improvements in automation and digitization, next-generation materials, alternative energy sources and storage, and increased data throughput.
Standard

AIRCRAFT DATA INTERFACE FUNCTION (ADIF)

2020-07-21
CURRENT
ARINC834-8
This document defines an Aircraft Data Interface Function (ADIF) developed for aircraft installations that incorporate network components based on commercially available technologies. This document defines a set of protocols and services for the exchange of aircraft avionics data across aircraft networks. A common set of services that may be used to access specific avionics parameters are described. The ADIF may be implemented as a generic network service, or it may be implemented as a dedicated service within an ARINC 759 Aircraft Interface Devices (AID) such as those used with an Electronic Flight Bag (EFB). Supplement 8 includes improvements in the Aviation Data Broadcast Protocol (ADBP), adds support for the Media Independent Aircraft Messaging (MIAM) protocol, and contains data security enhancements. It also includes notification and deprecation of the Generic Aircraft Parameter Service (GAPS) protocol that will be deleted in a future supplement.
Standard

AIRCRAFT SERVER, COMMUNICATIONS, AND INTERFACE STANDARD

2021-11-10
CURRENT
ARINC679
ARINC Report 679 defines the functional characteristics of an airborne server that will support Electronic Flight Bags (EFBs) and similar peripherals used in the flight deck, cabin, and maintenance applications. The document defines how EFBs will efficiently, effectively, safely, and securely connect to the airborne server in a way that offer expanded capabilities to aircraft operators. The airborne server has two main functions, first to provide specific services to connected systems, and second to provide centralized security for the EFB and its data. This document is a functional airborne server definition. It does not define the physical characteristics of the server.
Journal Article

Accelerated Secure Boot for Real-Time Embedded Safety Systems

2019-07-08
Abstract Secure boot is a fundamental security primitive for establishing trust in computer systems. For real-time safety applications, the time taken to perform the boot measurement conflicts with the need for near instant availability. To speed up the boot measurement while establishing an acceptable degree of trust, we propose a dual-phase secure boot algorithm that balances the strong requirement for data tamper detection with the strong requirement for real-time availability. A probabilistic boot measurement is executed in the first phase to allow the system to be quickly booted. This is followed by a full boot measurement to verify the first-phase results and generate the new sampled space for the next boot cycle. The dual-phase approach allows the system to be operational within a fraction of the time needed for a full boot measurement while producing a high detection probability of data tampering.
Video

Advancing Aircraft Cyber Security - Potential New Architectures and Technologies

2012-03-16
Cyber security in the aviation industry, especially in relation to onboard aircraft systems, presents unique challenges in its implementation and management. The cyber threat model is constantly evolving and will continually present new and different challenges to the aircraft operator in responding to new cyber threats without either invoking a lengthy software update and re-certification process or limiting aircraft-to-ground communications to the threatened system or systems. This presentation discusses a number of system architectural options and developing technologies that could be considered to enhance the aircraft cyber protection and defensive capabilities of onboard systems as well as to minimize the effort associated with certification/re-certification. Some of these limit the aircraft?s vulnerabilities or in cyber terms, its ?threat surface?.
Event

AeroTech®

2024-04-23
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

AeroTech® Digital Summit

2024-04-23
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

AeroTech® Volunteer Resources

2024-04-23
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Magazine

Aerospace & Defense Technology: April 2023

2023-04-06
Breathing Life into Artificial Intelligence and Next Generation Autonomous Aerospace Systems Robotic Rotational Molding Creates New Opportunities for Military and Aerospace Applications Rim-Driven Electric Aircraft Propulsion High-Speed Midwave Infrared Cameras Enable Military Test Range Tracking System What Today's Advances in Radar Technology Mean for Testing and Training Tackling Ruggedization Challenges for RF Communications in Software Defined Radios AUVSI XPONENTIAL 2023 The Blueprint for Autonomy Multi-Scale Structuring of the Polar Ionosphere Understanding a radically new sensing capability for polar ionospheric science introduced by observational evidence recently provided by the electronically steerable Resolute Bay Incoherent Scatter Radar (RISR). Stepped-Frequency Distributed Radar for Through-the-Wall Sensing A technical analysis of the effectiveness of distributed radar for through-the-wall sensing applications.
X