Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Fuel Consumption and GHG Reductions by using Used Cooking Oil as a Fuel in a HGV under Real World Driving Conditions

2014-10-13
2014-01-2727
This paper focused on the fuel consumption and GHG reductions. The fuel consumption was determined by volumetric, mass and energy per km travelled and per ton of GVW. ...The substitution ratio of PD by the C2G Ultra Biofuel is 86∼91% and 74∼81% for hot start and cold start trips respectively. The GHG reductions by the C2G Ultra Biofuel are 85∼89% and 73∼78% for hot start and cold start trips respectively.
Journal Article

Life-Cycle Greenhouse Gas and Criteria Air Pollutant Emissions of Electric Vehicles in the United States

2013-04-08
2013-01-1283
In particular, we established statistically robust probability distribution functions (PDFs) to address the uncertainty and variation in both thermal and environmental performances of various types of power plants that can result in uncertainties of the life-cycle GHG and CAP emissions of electric vehicles. With the detailed characterization of the GHG and CAP emissions from the power sector, we performed a life-cycle analysis (LCA) of the GHG and CAP emissions of electric vehicles in the United States, with the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory. ...To fulfill this objective, we explicitly analyzed the emission characteristics of greenhouse gases (GHG) and criteria air pollutants (CAP, representing VOC, CO, NOx, PM₁₀ and PM₂.₅, and SOx,) of the U.S. power sector, a pivotal upstream sector that impacts the life-cycle GHG and CAP emissions associated with electric vehicles. ...To fulfill this objective, we explicitly analyzed the emission characteristics of greenhouse gases (GHG) and criteria air pollutants (CAP, representing VOC, CO, NOx, PM₁₀ and PM₂.₅, and SOx,) of the U.S. power sector, a pivotal upstream sector that impacts the life-cycle GHG and CAP emissions associated with electric vehicles. In particular, we established statistically robust probability distribution functions (PDFs) to address the uncertainty and variation in both thermal and environmental performances of various types of power plants that can result in uncertainties of the life-cycle GHG and CAP emissions of electric vehicles.
Technical Paper

Comparison of Conventional vs Reactivity-Controlled Compression Ignition Diesel-Hythane Dual-Fuel Combustion: An Investigation on Engine Performance and Emissions at Low-Load

2023-06-26
2023-01-1203
However, taking into account of CH4 emission, RCCI DF operation led to 20% reduction in the overall GHG emissions compared to the CDC baseline, whilst the CDF mode increased GHG formation by 49%. ...The exponential rise in greenhouse gas (GHG) emissions into the environment is one of the major concerns of international organisations and governments.
Technical Paper

Octane-on-Demand as an Enabler for Highly Efficient Spark Ignition Engines and Greenhouse Gas Emissions Improvement

2015-04-14
2015-01-1264
This paper explores the potential for reducing transport-related greenhouse gas (GHG) emissions by introducing high-efficiency spark-ignition engines with a dual-fuel injection system to customize the octane of the fuels based on real-time engine requirements. ...A Well-to-Wheels (W-t-W) GHG emissions assessment was conducted to estimate the overall emissions benefits of the dual fuel system. ...However, if a pathway for naphtha and oxygenate are chosen different than petroleum source, for example, natural gas feed Fischer-Tropsch naphtha and coal base methanol, GHG emissions are worse than baseline case. When the dual fuel system was combined with downsized boosted engine technology, synergic benefit was obtained maximum 30% W-t-W CO2eq reduction (15% from downsizing, 10% from mitigating knock via a high octane component and 5% from minimizing octane upgrade process in the refinery).
Technical Paper

Experimental and Numerical Investigation of Hydrogen Injection and its Preliminary Impact on High Performance Engines Development

2023-04-11
2023-01-0402
Under the proposed Green Deal program, the European Union will aim to achieve zero net greenhouse gas (GHG) emissions by 2050. The interim target is to reduce GHG by 55% by 2030. In the current debate concerning CO2-neutral powertrains, bio-fuels and e-fuels could play an immediate and practical role in reducing lifecycle engine emissions.
Technical Paper

A Life Cycle Comparison of Alternative Transportation Fuels

2000-04-26
2000-01-1516
Biofuels offer the benefits of lower and even negative GHG emissions, sustainability, and domestic fuel production. The herbaceous and woody biomass–based ethanol options are more attractive than producing ethanol and biodiesel from food products.
Technical Paper

Development of Medium Duty H2 ICE for ON & OFF Highway Application

2024-01-16
2024-26-0170
Throughout the world the efforts are being carried out to reduce the GHG emissions from transportation sector. As Volvo Group is a signatory of SBTi and having internal target of carbon neutrality by 2040, we have intensified & also diversified our R&D efforts to develop powertrains of the future having mix of conventional, various alternate fuels, electric etc.
Technical Paper

Efficiency and Emissions Characteristics of Partially Premixed Dual-Fuel Combustion by Co-Direct Injection of NG and Diesel Fuel (DI2) - Part 2

2017-03-28
2017-01-0766
The CO2 advantage coupled with the low NOX and PM potential of natural gas (NG) makes it well-suited for meeting future greenhouse gas (GHG) and NOX regulations for on-road medium and heavy-duty engines. However, because NG is mostly methane, reduced combustion efficiency associated with traditional NG fueling strategies can result in significant levels of methane emissions which offset the CO2 advantage due to reduced efficiency and the high global warming potential of methane.
Technical Paper

High-Pressure Hydrogen Jet Behavior: Flow Rate and Inner Morphology Investigation

2024-04-09
2024-01-2617
The combustion of fossil-based fuels in ICEs, resulting in a huge amount of greenhouse gases (GHG) and leading to an immense global temperature rise, are the root causes of the more stringent emission legislations to safeguard health and that encourage further investigations on alternative carbon-neutral fuels.
Technical Paper

Exploring a Gasoline Compression Ignition (GCI) Engine Concept

2013-04-08
2013-01-0911
Future vehicles will increasingly be required to improve their efficiency, reduce both regulated and CO₂ emissions, and maintain acceptable levels of driving, safety, and noise performance. To achieve this high level of performance, they will be configured with more advanced hardware, sensors, and control technologies that will also enable their operation on a broader range of fuel properties. These capabilities offer the potential to design future vehicles to operate on the most widely available and GHG-reducing fuels. In previous studies, fuel flexibility has been demonstrated on a compression ignition bench engine and vehicle equipped with an advanced engine management system, closed-loop combustion control, and air-path control strategies. An unresolved question is whether engines of this sort can operate routinely on market gasoline while achieving diesel-like efficiency and acceptable emissions and noise levels.
X