Refine Your Search

Topic

Search Results

Viewing 1 to 6 of 6
Technical Paper

Experimental Study of Heat Transfer and Pressure Drop Phenomena in Kerosene-Graphene Nanoplatelets in a Mini Channel Heat Sink

2022-11-07
2022-01-5093
Our work intends to conduct experiments on kerosene-graphene nanoplatelets (GNP) nanofluid in a mini channel heat sink (MCHS) in two concentrations of graphene to verify the heat transfer and other hydrothermal phenomena. Many experiments have already been carried out on cooling electronic devices using mini channels along with various water-based nanofluids. ...The experiments with kerosene-GNP nanofluid are conducted in two different weight percentages of graphene, 0.01 and 0.03. The surfactant used for best visual stability is oleylamine, with an optimum mass ratio of 0.6 between it and graphene nanoparticles. ...The surfactant used for best visual stability is oleylamine, with an optimum mass ratio of 0.6 between it and graphene nanoparticles. A Peltier heater is attached to the bottom of the mini channel and provided with three different heat supplies of 8 W, 10 W, and 12 W, respectively, by varying the current and voltage of the direct current (DC) source.

SAE EDGE™ Research Reports - Publications

2024-04-23
SAE EDGE Research Reports provide examinations significant topics facing mobility industry today including Connected Automated Vehicle Technologies Electrification Advanced Manufacturing
Technical Paper

Evaporation Characteristics of Fuels for Low Temperature Combustion Engine Applications

2021-09-21
2021-01-1210
The research on reducing emissions from automotive engines through modifications in the combustion mode and the fuel type is gaining momentum because of the increasing contribution to global warming by the transportation sector. The combustion and emission formation in the advanced low temperature combustion (LTC) engine strategies are susceptible to fuel molecular composition and properties. Ignition timing in LTC strategies is primarily controlled by fuel composition and associated chemical kinetics. Thus, tailoring of fuel properties is required to address the limitations of LTC in terms of lack of control on ignition timing and narrow engine operating load range. Utilizing fuel blends and additives such as nanoparticles is a promising approach to achieving targeted fuel property. An improved understanding of fundamental processes, including fuel evaporation, is required due to its role in fuel-air mixing and emission formation in LTC.
X