Refine Your Search

Topic

Search Results

Viewing 1 to 9 of 9
Technical Paper

Finite Element Analysis of Graphene Based Solar Photonic Battery for Electric Vehicle

2023-09-14
2023-28-0021
These nanostructures of 1D, such as nanowires, nanotubes and nanorods, present great potential for enhancing photon absorption, electron transit, and electron collection in solar cells. Graphene is a 2D hexagonal lattice of carbon atoms that is atomically thin. The remarkable mechanical properties of graphene are due to its structure, in which each carbon atom shares three of its four electrons in covalent bonds with its nearest neighbours (sp2 bonds). ...The remarkable mechanical properties of graphene are due to its structure, in which each carbon atom shares three of its four electrons in covalent bonds with its nearest neighbours (sp2 bonds). ...At the same time, the remaining fourth electrons are delocalized across the two-dimensional lattice in an orbital that accounts for the majority of the material’s optoelectronic capabilities. Also, Graphene is noted for having mobility that exceeds that of good metals. Furthermore, since a number of solution-based techniques, such as simple spin coating, may be used to create thin films of graphene a range of compositions can be created utilising low-cost, straightforward, and large-scale processes.
Technical Paper

Vacua Buoyancy Is Provided by a Vacuum Bag Comprising a Vacuum Membrane Film Wrapped Around a Three-Dimensional (3D) Frame to Displace Air, on Which 3D Graphene “Floats” a First Stack of Two-Dimensional Planer Sheets of Six-Member Carbon Atoms Within the Same 3D Space as a Second Stack of Graphene Oriented at a 90-Degree Angle

2010-11-02
2010-01-1784
In Figures 3-5, 3D graphene "floats" a first stack of two-dimensional (2D) planar sheets of six-member carbon atoms within the same 3D space as a second stack of graphene oriented at a 90° angle. 3D graphene atomic trap nanomembranes in Figure 3 that ring link six-member carbon atoms together maintain an extremely high vacuum for the greatest buoyancy of a Vacua Dirigible. 3D graphene atomic trap nanomembranes can become an extremely high pressure air beam where no other material is as thin, strong, flexible, electrically conductive, and gastight. ...New graphite ultrathin nanomembranes made of layered graphene make vacuum bags gastight. An electric swing cycle is applied across nanomembranes to reduce air density on selected outside dirigible surfaces to gracefully control buoyancy. ...These thirty-two vacuum bags are manufactured from gastight six-member carbon molecules of graphene arrayed into composite ultrathin nanomembranes. Each surface of the hexagon vacuum bags gastight nanomembranes are individual electric circuits.
Journal Article

Advanced Materials for Aerospace and Space Applications

2014-09-16
2014-01-2233
This paper will also describe emerging materials such as graphene and some of its applications to enhance the performance of current technologies It is easy become enamored with the composite big parts built for trains, planes, automobiles, ships, and wind turbine blades.
Technical Paper

Soot Nanostructure: Definition, Quantification and Implications

2005-04-11
2005-01-0964
In this article, the dependence of the soot oxidation rate upon nanostructure, namely the length, separation distance and curvature of the graphene segments is shown. Soots possessing graphitic, fullerenic or amorphous nanostructure are used for this comparison.

SAE EDGE™ Research Reports - Publications

2024-04-23
SAE EDGE Research Reports provide examinations significant topics facing mobility industry today including Connected Automated Vehicle Technologies Electrification Advanced Manufacturing
Article

The next material disruption

2018-04-06
In a recent joint paper by the Aerospace Technology Institute (ATI) and the National Graphene Institute (NGI) at the University of Manchester, researchers outlined the disruptive impact potential of graphene applications in aerospace. This comes at a time of marked graphene innovation from research teams in Japan and Singapore. ...In a recent joint paper by the Aerospace Technology Institute (ATI) and the National Graphene Institute (NGI) at the University of Manchester, researchers outlined the disruptive impact potential of graphene applications in aerospace.
Book

Solar Energy Harvesting: How to Generate Thermal and Electric Power Simultaneously

2016-01-01
Solar Energy Harvesting: How to Generate Thermal and Electric Power Simultaneously describes energy harvesting using a hybrid concentrating photovoltaic (PV) system with simultaneous thermal generation for energy storage. Several designs have been proposed to build a system that takes advantage of the entire solar spectrum through direct electric generation using concentrated light onto photovoltaics while generating thermal energy using wavelengths of light not captured by the PV cell. This title addresses the current technologies and state-of-the-art designs, as well as the methodologies, underlying physics, and engineering implications.
Book

Power Harvesting via Smart Materials

2017-01-01
This monograph covers the fundamentals, fabrication, testing, and modeling of ambient energy harvesters based on three main streams of energy-harvesting mechanisms: piezoelectrics, ferroelectrics, and pyroelectrics. It addresses their commercial and biomedical applications, as well as the latest research results. Graduate students, scientists, engineers, researchers, and those new to the field will find this book a handy and crucial reference because it provides a comprehensive perspective on the basic concepts and recent developments in this rapidly expanding field.
X