Refine Your Search

Search Results

Viewing 1 to 5 of 5
Research Report

The Challenges of Vehicle Decarbonization

2022-04-27
EPR2022SE1
A narrow focus on electrification and elimination of tailpipe emissions is unlikely to achieve decarbonization objectives. Renewable power generation is unlikely to keep up with increased demand for electricity. A focus on tailpipe emissions ignores the significant particulate pollution that “zero emission” vehicles still cause. It is therefore vital that energy efficiency is improved. Active travel is the key to green economic growth, clean cities, and unlocking the energy saving potential of public transport. The Challenges of Vehicle Decarbonization reviews the urgent need to prioritize active travel infrastructure, create compelling mass-market cycling options, and switch to hybrid powertrains and catenary electrification for long-haul heavy trucks. The report also warns of the potential increase in miles travelled with the advent of personal automated vehicles as well as the pitfalls of fossil-fuel derived hydrogen power.
Research Report

Impact of Electric Vehicle Charging on Grid Energy Buffering

2022-09-26
EPR2022022
Variable renewable energy (VRE), such as photovoltaic solar and wind turbines, will require new approaches to buffering energy within the grid. This must include significant ancillary services and longer duration storage to buffer seasonal variations in supply and demand. Such services may be economically provided by leveraging the battery resources of electric vehicles (EVs) for frequency response and energy storage for durations of up to a few hours, together with baseload and dispatchable power for longer duration buffering. Impact of Electric Vehicle Charging on Grid Energy Buffering discusses the unsettled issues and requirements needed to realize the potential of EV batteries for demand response and grid services, such as improved battery management, control strategies, and enhanced cybersecurity.
Research Report

Electric Road Systems for Dynamic Charging

2022-03-11
EPR2022007
Electric road systems (ERS) enable dynamic charging—the most energy efficient and economical way to decarbonize road vehicles. ERS draw electrical power directly from the grid and enable vehicles with small batteries to operate without the need to stop for charging. The three main technologies (i.e., overhead catenary lines, road-bound conductive tracks, and inductive wireless systems in the road surface) are all technically proven; however, no highway system has been commercialized. Electric Road Systems for Dynamic Charging discusses the technical and economic advantages of dynamic charging and questions the current investment in battery-powered and hydrogen-fueled vehicles. Click here to access the full SAE EDGETM Research Report portfolio.
Research Report

Decarbonized Power Options for Non-road Mobile Machinery

2023-01-19
EPR2023002
Power options for off-road vehicles differ substantially from other commercial vehicles. Battery electrification is suitable for urban construction and light agriculture, but remote mining, forestry, and road building operations will require alternative fuels. Decarbonized Power Options for Non-road Mobile Machinery discusses these domains as well as the potential benefits and challenges of implementing fuels and energy sources such as bioenergy, e-fuels, and alcohol, as well as hydrogen, hydrocarbon, and direct methanol fuel cells. Click here to access the full SAE EDGETM Research Report portfolio.
Research Report

Decarbonized Fuel Options for Long-haul Commercial Vehicles

2023-03-15
EPR2023005
Most heavy trucks should be fully electric, using a combination of batteries and catenary electrification, but heavy trucks requiring very long unsupported range will need chemical fuels. At the scale of heavy trucks, compressed hydrogen can match the specific energy of diesel, but its energy density is five times lower, limiting range to around 2,000 km. Scaling green hydrogen production and addressing leakage must be priorities. Hydrogen-derived electrofuels—or “e-fuels”—have the potential to scale, and while the economic comparison currently has unknowns, clean air considerations have gained new importance Decarbonized Power Options for Long-haul Commercial Vehicles discusses these energy sources as well as the caveats related to bioenergy usage, and reasons to prefer ethanol or methanol to diesel-type fuels. Click here to access the full SAE EDGETM Research Report portfolio.
X