Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Power Transmission by Laser Beam from Lunar-Synchronous Satellites to a Lunar Rover

1992-08-03
929437
This study addresses the possibility of beaming laser power from synchronous lunar orbits (the L1 and L2 LaGrange points) to a manned long-range lunar rover. The rover and two versions of a satellite system (one powered by a nuclear reactor; the other by photovoltaics) are described in terms of their masses, geometry, power needs, mission and technological capabilities. ...Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. ...The advantages of the two satellite/rover systems over other such systems and over rovers with on-board power are discussed along with the possibility of enabling other missions.
Technical Paper

Mars Exploration Rover Surface Mission Flight Thermal Performance

2005-07-11
2005-01-2827
NASA launched two rovers in June and July of 2003 as a part of the Mars Exploration Rover (MER) project. MER-A (Spirit) landed on Mars in Gusev Crater at 15 degrees South latitude and 175 degrees East longitude on January 4, 2004 (Squyres, et al., Dec. 2004). ...This paper describes the MER rover thermal design, its implementation and performance on Mars. The rover surface thermal design performance was better than pre-landing predictions. ...., Aug. 2004). Both rovers have well exceeded their design lifetime (90 Sols) by more than a factor of 5. Spirit and Opportunity are still healthy and continue to execute their roving science missions at the time of this writing.
Technical Paper

Sojourner on Mars and Lessons Learned for Future Planetary Rovers

1998-07-13
981695
In this paper, the rover navigation performance is analyzed on the basis of received rover telemetry, rover uplink commands and stereo images captured by the lander cameras. ...Implications for next-generation planetary rovers are described, including the sub-1-Kg Nanorover being built by NASA to conduct asteroid exploration as part of the Japanese MUSES-C sample return mission and the large rover with the Athena payload which will be used as part of the Mars sample return program. ...Implications for next-generation planetary rovers are described, including the sub-1-Kg Nanorover being built by NASA to conduct asteroid exploration as part of the Japanese MUSES-C sample return mission and the large rover with the Athena payload which will be used as part of the Mars sample return program.
Technical Paper

Inukshuk Landed Robotic Canadian Mission to Mars using a Miniature Sample Analysis Lab for Planetary Mineralogy and Microbiology

2007-07-09
2007-01-3104
This paper discusses the Inukshuk landed rover mission to Mars that is currently undergoing the Phase 0 mission study for the Canadian Space Agency. ...The Inukshuk landed rover mission addresses key science themes for planetary exploration; focusing on the search for hydrated mineralogy and subsurface water sites that can provide evidence of past or present life. ...New exploration and science will be accomplished using an innovative tethered combination of a small rover and a self-elevating sky-cam aerostat. The elevating visible (VIS) imager, at about 10 m altitude, will provide an informative high-resolution 2-D view of the rover below and surrounding terrain to greatly assist the semi-autonomous navigation of the rover around obstacles and selection of sites for detailed subsurface exploration.
Technical Paper

The CHEMCAM Instrument on Mars Science Laboratory (MSL 11): First Laser Induced Breakdown Spectroscopy Instrument in Space!

2009-07-12
2009-01-2397
ChemCam is one of the 10 instrument suites on the Mars Science Laboratory, a martian rover being built by Jet Propulsion Laboratory, for the next NASA mission to Mars (MSL 2009). ChemCam is an instrument package consisting of two remote sensing instruments: a Laser-Induced Breakdown Spectrometer (LIBS) and a Remote Micro-Imager (RMI). ...Both instruments rely on an autofocus capability to precisely focus on the chosen target, located at distances from the rover comprised between 1 and 9 m for LIBS, and 2 m and infinity for RMI. ChemCam will help determine which samples, within the vicinity of the MSL rover, are of sufficient interest to use the contact and in-situ instruments for further characterization. ...ChemCam will help determine which samples, within the vicinity of the MSL rover, are of sufficient interest to use the contact and in-situ instruments for further characterization.
Journal Article

Thermal Design Trade Study for the Mars Science Laboratory ChemCam Body Unit

2009-07-12
2009-01-2462
The portion of ChemCam that is located inside the Rover, the ChemCam Body Unit contains the imaging charged-coupled device (CCD) detectors. Late in the design cycle, the ChemCam team explored alternate thermal design architectures to provide CCD operational overlap with the Rover's remote sensing instruments. ...Late in the design cycle, the ChemCam team explored alternate thermal design architectures to provide CCD operational overlap with the Rover's remote sensing instruments. This operational synergy is necessary to enable planning for subsequent laser firings and geological context.
Technical Paper

Neck-Entry Suitports: A Novel Concept Utilizing Morphing Upper Torso Technology

2009-07-12
2009-01-2571
This paper describes a unique concept for donning and doffing a spacesuit from a pressurized rover or habitat, which merges three independent concepts: suitports, neck-entry EVA suits, and the Morphing Upper Torso. ...To develop this concept, a neck-entry Morphing Upper Torso experimental model has been designed and fabricated, and systems level design studies have been performed, including visualization with the aid of CAD models of the neck-entry suitport on a small pressurized rover and a lunar habitat. As well, a donning test-station has been developed and used for experiments in 1-G, simulated microgravity and simulated partial gravity. ...Together with the CAD models and the experimental pressurized Morphing Upper Torso model, the experiments have shown that this concept should be considered for a future suitport and suit architecture, which could greatly simplify the suitport design, minimize volume needed within the rover or habitat, improve PLSS design and servicing, and simplify suit alignment with the suitport during egress from the suit.
Magazine

Aerospace & Defense Technology: October 2017

2017-10-01
Using Thermal Simulation to Model the Effects of Wind on the Mars Curiosity Rover Quality and Validation of Digital Designs for Aerospace and Defense Scaling LiDAR Optical Payloads from Drones to Miniature UAVs Using Sintered Fiber Metal Composites for Aircraft Acoustic Attenuation GaN Breaks Barriers RF Power Amplifiers Go Wide and High Test System Ensures Flawless Performance of Military RF Devices The Impact of Video Compression on Remote Cardiac Pulse Measurement Using Imaging Photoplethysmography Remote physiological measurement technique leverages digital cameras to recover the blood volume pulse from the human body.
Article

JAXA MINERVA-II1 rovers achieve asteroid landing, autonomy, image and data capture

2018-09-24
Japan Aerospace Exploration Agency (JAXA) officials have released the first images from two unmanned rovers that landed safely on the surface of asteroid Ryugu just days ago. The compact MINERVA-II1 rovers, Rover-1A and Rover-1B, separated from the Hayabusa2 spacecraft on Sept. 21 at 13:06 Japan Standard Time (JST) and landed on Ryugu with a bounce. ...The compact MINERVA-II1 rovers, Rover-1A and Rover-1B, separated from the Hayabusa2 spacecraft on Sept. 21 at 13:06 Japan Standard Time (JST) and landed on Ryugu with a bounce.
Technical Paper

Advanced Miniature IR Spectral Processor for the Infrared Spectral Monitoring of Spacecraft Vital Life-Support Systems and Remote Astronaut Health Diagnostics

2006-07-17
2006-01-2178
This paper discusses recent advances in the binary-coded IOSPEC technology towards providing an integrated chemical analysis system for manned space systems and planetary rovers. An active shutter array is being developed based on a thin-film structure that enables broad-band optical switching and multiplexing at ms speeds with no moving parts for reliable long-term operation.
Magazine

Aerospace & Defense Technology: June 2020

2020-06-01
Designing Battery Packs for Harsh Environment Mission-Critical Devices High-Energy Laser Weapon Systems Advanced Assembly Solutions for the Airbus RACER Joined-Wing Configuration Digital Twins How The Digital Replica Concept Is Used By Robotic Systems Practical 3D Printing of Antennas and RF Electronics Photonic Microwave Generation Using On-Chip Optical Frequency Combs DDDAMS-based Urban Surveillance and Crowd Control via UAVs and UGVs Investigating algorithmic approaches to create scalable, robust, multi-scale, and effective urban surveillance and crowd control strategies using UAVs and UGVs. Covariance and Uncertainty Realism in Space Surveillance and Tracking Characterizing uncertainty in estimating the state of a resident space object is one of the fundamentals of many space surveillance tasks.
Magazine

Aerospace & Defense Technology: December 2016

2016-12-01
Additive Manufacturing How 3D Printing Will Transform the A&D Support Chain Advances in Lightweight Electronics Protection Conformal Coatings Increase Reliability of Aerospace and Military Assemblies Powering Outer Space An In-Depth Look at Aerospace Battery Technology Using High Bandwidth Oscilloscopes to Analyze Radar and Electronic Warfare Systems Bio-inspired Airborne Infrastructure Reconfiguration (BioAIR) EMI Analysis Software Helps Telescope Group Simulate RFI Mitigation Epitaxial Growth of Rhenium with Sputtering Processing and Characterization of Polycrystalline YAG (Yttrium Aluminum Garnet) Core-Clad Fibers Multi-Scale Analysis of Deformation and Failure in Polycrystalline Titanium Alloys Under High Strain Rates Abrasion Testing of Products Containing Nanomaterials Spectrum Fatigue of 7075-T651 Aluminum Alloy under Overloading and Underloading
Magazine

Aerospace & Defense Technology: February 2021

2021-01-28
Empowering Soldiers Through ISPDS Dispensable Gels vs Gap Filler Pads An Analysis of Thermal Management Materials Electronic Warfare Vying for Control of the Electromagnetic Spectrum More Bang for the Buck A New Design and Manufacturing Method for Deep Penetrating Bomb Cases A Comprehensive Way to Use Bonding to Improve RF Performance of Low Noise Amplifiers Army and Universities Deploy New Warfighter Communication Technology Radiation Effects on Electronics in Aligned Carbon Nanotube Technology (RadCNT) Characterizing the fundamental mechanisms and charge transport phenomena governing the interactions between ionizing and non-ionizing radiation with carbon-based (nanotube and graphene) field-effect transistors (FETs) devices and integrated circuits (ICs).
Magazine

Aerospace & Defense Technology: May 2017

2017-05-04
Interoperability Standards Pave the Way for Modular Robotic Manipulators Solar Powering UAVs Deploying COTS Subsystems in UUVs Developing a Multi-Modal UGV Robot Control Interface Fast-Tracking Autonomous Vehicles with Simulation Gesture-Based Controls for Robots: Overview and Implications for Use by Soldiers Identifying the Flow Physics and Modeling Transient Forces on Two-Dimensional Wings Experimental Confirmation of an Aquatic Swimming Motion Theoretically of Very Low Drag and High Efficiency The Scaling of Loss Pathways and Heat Transfer in Small Scale Internal Combustion Engines A Guide for Developing Human-Robot Interaction Experiments in the Robotic Interactive Visualization and Experimentation Technology (RIVET) Simulation
Magazine

Aerospace & Defense Technology: August 2020

2020-08-01
Reverse Engineering the Boeing E-3 Sentry's Secondary Flight Controls Vanadium - A Green Metal Critical to Aerospace and Clean Energy Thrust in Space - The Nuances of Thruster Valve Design 3D Printing Aerodynamic Improvements Cryogenic-Capable Isolators Improve the Performance of Millimeter-Wave Systems by Lowering Noise Levels Detection with Quantum Radar A new radar prototype utilizes quantum entanglement as a method of object detection. Preliminary Development of an Integrated Mobility, Lethality, and Survivability Soldier Performance Testing Platform Developing a methodology that incorporates objective measures of performance and is sensitive to changes in soldier-system equipment could help guide equipment manufacturers during product development and acquisition. Bore Elevation and Azimuth Measurement System (Beams) Newly developed laser apparatus verifies that the pointing accuracy requirement of a weapon's fire control system is met.
Magazine

Tech Briefs: September 2018

2018-09-01
Enhanced SATCOMs for Unmanned Aerial Systems The Bus Too Tough to Die Combating Infrared Threats on the Battlefield Optical Interconnect Design Challenges in Space High-Performance Computing for the Next-Generation Combat Vehicle Merging Antenna and Electronics Boosts Energy and Spectrum Efficiency Integrated Magneto-Optical Devices for On-Chip Photonic Systems Development of magneto-optical (MO) materials could lead to a range of nonreciprocal optical devices for emerging standardized photonic integrated circuit (PIC) fabrication processes. Low Power Optical Phase Array Using Graphene on Silicon Photonics Electrostatic doping of 2D materials embedded in waveguides could enable ultrafast devices with unprecedented power. Spatial Resolution and Contrast of a Focused Diffractive Plenoptic Camera New technology captures spectral and spatial information of a scene in one snapshot while raising pixel counts and improving image quality.
Book

LiDAR Technologies and Systems

2019-07-10
Why are vision systems fundamental and critical to autonomous flight? What are the vision system tasks required for autonomous flight? How can those tasks be approached? It addresses the role of vision systems for autonomous operations and discusses the critical tasks required of a vision system, including taxi, takeoff, en-route navigation, detect and avoid, and landing, as well as formation flight or approach and docking at a terminal or with other vehicles. These tasks are analyzed to develop field of view, resolution, latency, and other sensing requirements and to understand when one sensor can be used for multiple applications. Airspace classifications, landing visibility categories, decision height criteria, and typical runway dimensions are introduced. The book provides an overview of sensors and phenomenology from visible through infrared, extending into the radar bands and including both passive and active systems.
Book

Remote Sensing from Air and Space

2007-01-01
This book will guide you in the use of remote sensing for military and intelligence gathering applications. Remote Sensing from Air and Space is a must-read for students working on systems acquisition or for anyone interested in the products derived from remote sensing systems. R. C. Olsen of the Naval Postgraduate School offers an eclectic description of the technologies and underlying physics for a wide range of remote sensing systems, including optical, thermal, radar, and lidar systems. This monograph describes this diverse set of applications using full-color graphics and a friendly, readable format.
X