Refine Your Search

Search Results

Standard

GUIDANCE FOR DISTRIBUTED RADIO ARCHITECTURES

2021-07-15
CURRENT
ARINC678
The purpose of this document is to evaluate Communication, Navigation, and Surveillance (CNS) Distributed Radio architectures and the feasibility of distributing the RF and systems processing sections to ensure the following: Reduce cost of equipment Reduce Size, Weight, and Power (SWaP) Ease of aircraft integration Growth capability built into the design Maintain or improve system availability, reliability, and maintainability It provides a framework to determine whether it is feasible to develop ARINC Standards that support CNS distributed radio architectures.
Standard

ROADMAP FOR IPV6 TRANSITION IN AVIATION

2020-06-19
CURRENT
ARINC686
ARINC Report 686 represents the consensus of industry to prepare a roadmap migration from IPv4 to IPv6. This document describes airline objectives (air and ground side when possible) towards the development and introduction of IPv6. There are three distinct elements considered: 1) the applications for addressing aspects 2) the communication network(s) over which the applications are running for the IP protocol level itself and associated features, and 3) the physical link(s) the network(s) interface.
Standard

CNS/ATM AVIONICS ARCHITECTURES SUPPORTING NEXTGEN/SESAR CONCEPTS

2014-01-10
CURRENT
ARINC660B
This document identifies and describes the aircraft avionics capability necessary for operation in the evolving Communications Navigation Surveillance/Air Traffic Management (CNS/ATM) environment expected for the FAA NextGen program, Single European Sky ATM Research (SESAR) program and considerations of the Japan Collaborative Actions for Renovation of Air Traffic Systems (CARATS). These capabilities are intended to satisfy the industry's long-term CNS/ATM operational objectives.
Standard

COMMUNICATIONS MANAGEMENT UNIT (CMU) MARK 2

2019-11-26
CURRENT
ARINC758-4
This ARINC Standard specifies the ARINC 758 Mark 2 Communications Management Unit (CMU) as an on-board message router capable of managing various datalink networks and services available to the aircraft. Supplement 4 adds Ethernet interfaces, per ARINC Specification 664 Part 2. This will allow the CMU to communicate with IP based radio transceivers (e.g., L-Band Satellite Communication Systems (Inmarsat SwiftBroadband (SBB) and Iridium Certus), ACARS over IP, AeroMACS, etc.).
Standard

INTERSYSTEM NETWORK INTEGRATION

2021-06-24
CURRENT
ARINC688
The purpose of this document is to provide guidelines for integrating previously standalone cabin systems such as cabin management systems, In-Flight Entertainment (IFE) systems, In-Flight Connectivity (IFC) systems, galley systems, surveillance systems, etc. Resource sharing between systems can reduce airline costs and/or increase functionality. But, as systems expose their internal resources to external systems, the risk of an intrusion that could degrade function and/or negatively expose the supplier’s or airline’s brand increases. This document provides a recommended IP networking design framework between aircraft systems to reduce the operational security threats while still supporting the necessary intersystem routing.
Standard

AIRCRAFT AUTONOMOUS DISTRESS TRACKING (ADT)

2019-08-26
CURRENT
ARINC680
This document describes the technical requirements, architectural options, and recommended interface standards to support an Autonomous Distress Tracking (ADT) System intended to meet global regulatory requirements for locating aircraft in distress situations and after an accident. This document is prepared in response to International Civil Aviation Organization (ICAO) and individual Civil Aviation Authorities (CAAs) initiatives.
Standard

CNS/ATM AVIONICS, FUNCTIONAL ALLOCATION AND RECOMMENDED ARCHITECTURES

1995-12-15
CURRENT
ARINC660
Defines a set of standard aircraft avionics architectures that support a cost-effective evolution to the fully operational CNS/ATM environment. These architectures are intended to meet near-term requirements (e.g., FANS-1, SCAT-1, etc.) and provide growth for supporting the full CNS/ATM function set. This standard represents broad airline consensus for developing avionics equipment providing CNS/ATM operating capabilities.
Standard

INTERNET PROTOCOL SUITE (IPS) FOR AERONAUTICAL SAFETY SERVICES PART 1 AIRBORNE IPS SYSTEM TECHNICAL REQUIREMENTS

2021-06-21
CURRENT
ARINC858P1
ARINC 858 Part 1 defines the airborne data communication network infrastructure for aviation safety services using the Internet Protocol Suite (IPS). ARINC 858 builds upon ICAO Doc 9896, Manual on the Aeronautical Telecommunication Network (ATN) using Internet Protocol Suite (IPS) Standards and Protocol. IPS will extend the useful life of data comm services presently used by operators, e.g., VDL, Inmarsat SBB, Iridium NEXT, and others. It represents the evolutionary path from ACARS and ATN/OSI to the end state: ATN/IPS. ARINC 858 includes advanced capabilities such as aviation security and mobility. This product was developed in coordination with ICAO WG-I, RTCA SC-223, and EUROCAE WG-108.
Standard

CABIN EQUIPMENT INTERFACES PART 9 CABIN INTERFACE NETWORK (CIN)

2017-12-29
CURRENT
ARINC628P9-5
ARINC 628, Part 9 defines general architectural philosophy and aircraft infrastructure for the proper use and interface of various cabin information network related equipment. It specifies a generic on-board infrastructure with commercial server technology, high-speed data communication and exchange via wired and wireless LAN for a wide range of applications. Supplement 5 significantly modifies the standard to remove references to obsolete cabin information network definition. It adds references to current cabin network definitions, ARINC 664: Aircraft Data Network and ARINC 808: Third Generation Network (3GCN).
Standard

AIRCRAFT DATA NETWORK PART 5 NETWORK DOMAIN CHARACTERISTICS AND INTERCONNECTION

2005-04-12
CURRENT
ARINC664P5
ARINC 664, Part 5 provides the design and implementation guidelines for networks installed in aircraft. Such networks may be used to enable network devices to communicate among themselves and with networks outside of the aircraft. This specification defines a set of domains within the aircraft. These domains are defined in terms of the services they provide, the security they provide to the functions within their boundaries, and the connections required between a domain and other domains and networks external to the aircraft. This specification provides general design and implementation guidelines that, when they are implemented by aircraft devices and configured by the system integrator, the devices provide the required connectivity, quality of service, safety and security.
Standard

CNS/ATM AVIONICS, FUNCTIONAL ALLOCATION AND RECOMMENDED ARCHITECTURES

2001-01-15
CURRENT
ARINC660A
This standard expands ARINC 660 to include industry-defined architectures for the CNS/ATM operating environment. These architectures are intended to meet long-term requirements (e.g., ADS-B, CPDLC, etc.) and provide growth for the future. Airlines support the implementation of these architectures for the long-term. This standard represents broad airline consensus for developing avionics equipment providing CNS/ATM operating capabilities.
Standard

AIRCRAFT NETWORK SERVER SYSTEM (NSS) FUNCTIONAL DEFINITION

2008-12-09
CURRENT
ARINC821
This document describes a collection of Aircraft Network Services (ANS) and Network Server System (NSS) functions that are suitable for installation in all types of aircraft. It defines network services intended for both aircraft and cabin installations that will manage and maintain the NSS in a common way. This document describes methods for the aircraft to effectively communicate with ground-based information management systems.
Standard

AIRCRAFT DATA NETWORK PART 4 INTERNET-BASED ADDRESS STRUCTURE & ASSIGNED NUMBERS

2007-12-21
CURRENT
ARINC664P4-2
This specification defines the addressing plan and rules for addressing used in Aircraft Data Networks (ADN). The plan is organized in accordance with the seven-layer Open Systems Interconnection (OSI) Reference Model. The specification sets forth the structure of addresses that are employed in the ADN and guidance for address determination. This guidance ensures that all applications - that use this address structure to send messages - can know the address structure of the destination(s) at configuration-time.
Standard

3GCN - CABIN DISTRIBUTION SYSTEM

2010-11-26
CURRENT
ARINC808-2
This Specification defines general architectural philosophy and aircraft infrastructure for the proper use and interface of various cabin related IFE equipment. Compliance with ARINC Specification 808 allows each respective system to operate in concert when integrated with other relevant cabin equipment. ARINC Specification 808 defines standards for the aircraft 3rd Generation Cabin Network (3GCN), IFE Cabin Distribution System (CDS), wiring, connectors, power, identification codes, space envelopes, and mounting principles. Although some of these standards also apply to 3GCN wireless IFE systems, the overall 3GCN wireless IFE network specification is covered in ARINC Specification 820. The equipment itself is not a subject of this specification because it may be unique to the system manufacturer or marketplace-driven. Design guidelines are included for informational purposes as these guidelines impact the interfaces and installation of cabin equipment aboard the aircraft.
Standard

CONSIDERATIONS FOR AVIONICS NETWORK DESIGN

1995-10-09
CURRENT
ARINC428
This standard provides the framework for developing a set of requirements for an avionics data bus network. This standard is intended to provide system-level considerations for the development of such a network, which may include a mix of standard data buses and private data buses.
Standard

TIMELY RECOVERY OF FLIGHT DATA (TRFD)

2021-08-06
CURRENT
ARINC681
The difficulty in locating crash sites has prompted international efforts for alternatives to quickly recover flight data. This document describes the technical requirements and architectural options for the Timely Recovery of Flight Data (TRFD) in commercial aircraft. ICAO and individual Civil Aviation Authorities (CAAs) levy these requirements. The ICAO Standards and Recommended Practices (SARPs) and CAA regulations cover both aircraft-level and on-ground systems. This report also documents additional system-level requirements derived from the evaluation of ICAO, CAA, and relevant industry documents and potential TRFD system architectures. It describes two TRFD architectures in the context of a common architectural framework and identifies requirements. This report also discusses implementation recommendations from an airplane-level perspective.
Standard

CABIN ARCHITECTURE FOR WIRELESS DISTRIBUTION SYSTEM

2019-08-13
CURRENT
ARINC820
This document defines a secure Wi-Fi distribution network installed in the aircraft passenger cabin for passenger and crew use. Carry-on Portable Electronic Devices (PEDs) such as smart phones, tablets, and laptops may use this network to access public internet services provided on the aircraft.
Standard

GUIDANCE FOR SECURITY EVENT LOGGING IN AN IP ENVIRONMENT

2017-06-21
CURRENT
ARINC852
This report sets forth guidance for IP-based onboard networks and systems residing in the Airline Information Services (AIS) and Passenger Information and Entertainment Services (PIES) Domains by establishing a common set of security related data elements and format(s) that are produced by aircraft systems, suitable for use by airline IT and/or avionic supplier analytical ground tools.
Standard

CABIN EQUIPMENT INTERFACES PART 3 IN-FLIGHT ENTERTAINMENT SYSTEM (IFES) TO AIRCRACT SYSTEM INTERFACES

2010-11-12
CURRENT
ARINC628P3-2
This standard consolidates and defines various interface parameters, except for power, that may be required to support the operation of an IFES on any airplane model. Supplement 2 adds an Ethernet interface between the aircraft Cabin Services System (CSS) and In-Flight Entertainment System. This interface may be used to exchange information between the CSS and The Passenger Service System (PSS), passenger address/entertainment, airplane mode, navigation, and operational data.
X