Refine Your Search

Topic

Search Results

Technical Paper

Summary of Resources for the International Space Station Environmental Control and Life Support System

2003-07-07
2003-01-2596
The assembly complete Environmental Control and Life Support (ECLS) system for the International Space Station (ISS) will consist of components and subsystems in both the U.S. and International partner elements which together will perform the functions of Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Fire Detection and Suppression (FDS), and Vacuum System (VS) for the station. Due to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems, beginning with estimates during the hardware development phase through measured actuals when flight hardware is built and delivered. A summary of resources consumed by the current on-orbit U.S. ECLS system hardware is presented, including launch weight, average continuous and peak power loads, on-orbit volume and resupply logistics.
Technical Paper

International Space Station Temperature and Humidity Control Subsystem Verification for Node 1

2007-07-09
2007-01-3185
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 THC subsystem design. The paper will also provide a discussion of the detailed Element Verification methodologies for nominal operation of the Node 1 THC subsystem operations utilized during the Qualification phase.
Technical Paper

International Space Station Atmosphere Control and Supply, Atmosphere Revitalization, and Water Recovery and Management Subsystem - Verification for Node 1

2007-07-09
2007-01-3102
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 ACS, AR, and WRM design and detailed Element Verification methodologies utilized during the Qualification phase for Node 1.
Technical Paper

International Space Station (ISS) Water Balance for Contingency Shuttle Crew Support (CSCS)

2005-07-11
2005-01-2838
The current International Space Station (ISS) water system is designed to support an ISS crew size of three people. The capability to expand that system to support nine crew members during a contingency Shuttle crew support scenario has been evaluated. This paper describes the water balance and water system capabilities for supporting Contingency Shuttle Crew Support (CSCS).
Technical Paper

Development of an Increased Capability Battery for the EMU

1999-07-12
1999-01-1998
The Extravehicular Mobility Unit (EMU) used by astronauts during space walks is powered by an 11-cell, silver-zinc battery. The present battery is certified for 6 cycles with a minimum discharge requirement of 7 hours above 16.0 volts at a 3.8 Amp load. Its certified wet-life is 170 days. Operational requirements for the International Space Station (ISS) led to a design capable of 32 cycles over a 425 day wet-life. Other battery parameters including capacity, rate capability, weight, volume, safety and the need for continuing compatibility with the EMU and the Space Shuttle charger dictate that the new battery will also be silver-zinc.
Technical Paper

International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Water Recovery and Management Subsystems

2008-06-29
2008-01-2183
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 ECLS WRM subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for that subsystem.
Technical Paper

International Space Station Environmental Control and Life Support System Changes for Increasing the ISS Crew Size to Six Crew Members and for Shuttle Retirement

2008-06-29
2008-01-2178
With the long anticipated change to increase the International Space Station (ISS) crew size from three to six crew members and the retirement of the Space Shuttle, changes are in work to the International Space Station (ISS) Environmental Control and Life Support (ECLS) System to support the increased on-orbit crew size and their continued operations. The Space Shuttle had provided high pressure oxygen resupply, high pressure nitrogen resupply, water resupply, atmosphere gaseous make up when the Space Shuttle is docked to ISS, and logistic cargo supply/return capability to ISS. Without the Space Shuttle additional changes need to be made to the ISS ECLS System to support the six crew members post Assembly Complete (AC). This will be in addition to the changes that were needed to support doubling the nominal ISS crew size from three to six crew members.
Technical Paper

International Space Station Environmental Control and Life Support System Acceptance Testing for the Pressurized Mating Adapters

2008-06-29
2008-01-2182
The International Space Station (ISS) Pressurized Mating Adapters (PMAs) Environmental Control and Life Support (ECLS) System is comprised of three subsystems: Atmosphere Control and Supply (ACS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). PMAs 1 and 2 flew to ISS on Flight 2A and Pressurized Mating Adapter (PMA) 3 flew to ISS on Flight 3A. This paper provides a summary of the PMAs ECLS design and a detailed discussion of the ISS ECLS Acceptance Testing methodologies utilized for the PMAs.
Technical Paper

International Space Station Environmental Control and Life Support System On-Orbit Station Development Test Objective Status

2003-07-07
2003-01-2593
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the ECLS System On-Orbit Station Development Test Objective (SDTO) status from the start of assembly until the end of February 2003.
Technical Paper

Methodology and Assumptions of Contingency Shuttle Crew Support (CSCS) Calculations Using ISS Environmental and Life Support Systems

2006-07-17
2006-01-2061
The current International Space Station (ISS) Environmental Control and Life Support (ECLS) system is designed to support an ISS crew size of three people. The capability to expand that system to support nine crew members during a Contingency Shuttle Crew Support (CSCS) scenario has been evaluated. This paper describes how the ISS ECLS systems may be operated for supporting CSCS, and the durations expected for the oxygen supply and carbon dioxide control subsystems.
Technical Paper

International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System Keep Out Zone On-Orbit Problems

2004-07-19
2004-01-2387
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system performance can be impacted by operations on ISS. This is especially important for the Temperature and Humidity Control (THC) and for the Fire Detection and Suppression (FDS) subsystems. It is also more important for Node 1 since it has become a convenient area for many crew tasks and for stowing hardware prior to Shuttle arrival. This paper will discuss the current requirements for ECLS keep out zones in Node 1; the issues with stowage in Node 1 during Increment 7 and how they impacted the keep out zone requirements; and the solution during Increment 7 and 8 for maintaining the keep out zones in Node 1.
Technical Paper

Summary of Resources for the International Space Station Environmental Control and Life Support System for Core Complete Modules

2004-07-19
2004-01-2386
The Core Complete Environmental Control and Life Support (ECLS) system for the International Space Station (ISS) will consist of components and subsystems in both the United States (U.S.) and International Partner elements which together will perform the functions of Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Fire Detection and Suppression (FDS), and Vacuum System (VS) for the station. Due to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems, beginning with estimates during the hardware development phase through measured actuals when flight hardware is built and delivered. A summary of resources consumed by the current and by the addition of future U.S.
Technical Paper

Space Station Crew Interface Specifications and Standards

1985-10-14
851801
A program has been initiated to develop a single set of man/system integration standards, requirements, and guidelines to design hardware and systems with which the space missions crew will interact. This paper describes the background, key issues, and methodology to be used in developing these standards. Included in the methodology is data collection and requirements analysis as well as technical monitoring and review, which includes a government/industry technical advisory group. This paper also briefly describes work performed on the Space Station Human Productivity study.
Technical Paper

Early Design Decision for Space Station

2000-07-10
2000-01-2329
It is always interesting to reflect on why things are the way they are and how they got that way. When the configuration of the modules for the International Space Station are looked at how many people wonder why they have that specific configuration. This paper will give an overview of the process for configuration determination. Pictures of some concepts are included.
Journal Article

Lessons Learned from the International Space Station (ISS) Environmental Control and Life Support System (ECLSS) Water Subsystem

2008-06-29
2008-01-2008
The International Space Station (ISS) has served as an excellent test bed for the implementation and integration of several life support systems, and has offered many lessons that can be applied to future vehicles and program. This paper focuses on those lessons learned within the Environmental Control and Life Support (ECLS) Water Subsystem, which have dictated on-orbit system performance and forced many operational controls. These include lessons on the need for precise documentation and testing, pros and cons of different types of storage containers, and the need for designing systems to have accessibility and flexibility. This paper describes the issues encountered on ISS and suggests solutions for future systems in the form of recommendations and questions posed to the future designers.
Technical Paper

Crew Exploration Vehicle Environmental Control and Life Support Development Status

2009-07-12
2009-01-2457
The Crew Exploration Vehicle (CEV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. The CEV is being developed to transport the crew safely from the Earth to the International Space Station and then later, from the Earth to the Moon . This year, the vehicle continued to go through design refinements to reduce weight, meet requirements, and operate reliably while preparing for Preliminary Design Review in the summer of 2009. The design of the Orion Environmental Control and Life Support (ECLS) system, which includes the life support and active thermal control systems, is progressing through the design stage. This paper covers the Orion ECLS development from April 2008 to April 2009.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2007 - 2008

2008-06-29
2008-01-2131
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2007 and February 2008. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
X