Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wing Manufacturing: Next Generation

1998-07-31
985601
Due to the part size and technological limitations of the available assembly equipment, traditional wing manufacturing has consisted of a three stage process. Parts are first manually tacked together in an assembly jig, They are then removed from the jig, rotated horizontally and craned into an automated fastening machine. Finally they are removed from the fastening machines and craned to a third station where the manual tacks are removed and the parts are prepped for final wing box assembly. With the advent of electromagnetic riveting (EMR) and the traveling yoke assembly machine this traditional approach has been replaced with single station processing. Wing panels and spars can now be automatically tacked together under continuous clamp up in their assembly jigs using EMR. This eliminates the requirement for disassembly, debur and cleaning required with the manual process.
Technical Paper

Modeling Long-Term Biodegradation of Inedible Plant Material

1998-07-14
981819
Few data are available on biodegradation rates of materials over the long-term (more than 30 days). This information is necessary to conduct trade studies (studies used to make selections between alternatives) comparing various degrees of biodegradation versus combining biodegradation with incineration for advanced life support (ALS) systems. This paper describes the extreme case in which solids are degraded only by biodegradation. Data on biodegradation of insoluble solids from inedible parts of tomato plants are fitted to single and double exponential decay models to obtain half-life estimates for these materials. The data were obtained from batch experiments of material degradation over a 128-day period using mixed microbial cultures including activated sludge and an inoculum of Phanaerochaete Chrysosporium, a fungus known for its ability to degrade lignin.
Technical Paper

Design of an Electrochemical Tubulated Bipolar Membrane Breadboard System for the Treatment of Spacecraft Waste Water

1998-07-13
981755
The removal of dissolved ions from waste water is essential for water repurification on long-term human space missions. Lynntech, Inc., has demonstrated a novel electrochemically driven purification method using tubulated bipolar ion exchange membranes for the separation of dissolved inorganic impurities as well as charged organic species from waste water. Generally, electrochemical separation methods have limited applications since they can only be applied to the purification of water that has a sufficiently high dissolved ion content to make the water conductive. The novel tubulated bipolar membranes composed of bilayers of oppositely charged ionically conducting polymers can be used to overcome this limitation. This paper deals with the scaling-up of such a device to increase the throughput to process about 100 liters of waste water per day. This is achieved by using stacks of tubulated bipolar membranes.
Technical Paper

Biomass Conversion to Pumpable Slurries

1998-07-13
981757
The inedible portion of plant biomass in closed regenerative life support systems must be reprocessed producing recyclable by-products such as carbon dioxide, sugars, and other useful organic species. High solids biomass slurries containing up to 27 wt% were successfully prepared in a stirred batch reactor and then pumped using a single piston valveless pump. Wheat straw, potato, and tomato crop residues were acid hydrolyzed using 1.2 wt% sulfuric acid at 180°C and 1.2 MPa for 0.75-1.5 hours. Viscosity for a 25 wt% acid hydrolyzed wheat straw emulsion (Bingham-plastic) was 6.5 centipoise at 3 cm/sec and 25°C.
Technical Paper

Object Oriented Tool for ALS Project Analysis on the Internet

1998-07-13
981753
As ALS goals branch out to extended missions to the moon and Mars, concurrent science and engineering projects take center stage in the development of new ALS technology. It is necessary to optimize the interdisciplinary research activities in order to ensure ALS research goals are met in a timely manner, and to guarantee the reliability of future long term missions. The SSM team of the NJ-NSCORT has developed an internet software platform capable of performing a systems level analysis of the ALS research activity. The information produced by the analysis can assist ALS researchers in the streamlining of research activity.
Technical Paper

MELISSA - A Graphical Environment for Life-Support Systems Simulation

1998-07-13
981754
A new software tool, MELISSA, has been developed for the simulation of life-support systems and other network-type subsystems. MELISSA features an intuitive graphical modeling environment and interactive simulation execution. Applications of MELISSA range from the analysis and validation of new ECLSS designs, to parametric optimization studies, to failure mode effects and criticality analysis of life-support systems. Additionally, MELISSA can be employed for training ECLSS developers and users, and as a teaching tool for lectures and seminars on systems design. As a demonstration, an ECLSS similar to the one of the International Space Station has been modeled and simulated.
Technical Paper

Rapid Enumeration of Active Bacteria in Water After Disinfection

1998-07-13
981761
Drinking water aboard spacecraft and on earth must be monitored to ensure that harmful bacteria are absent. NASA needs rapid methods for this purpose, to avoid possible launch delays and limit potential water-related health risks aboard spacecraft on orbit. Determination of bacterial viability after exposure to disinfection has significant health importance since oxidatively injured pathogenic bacteria have been shown to retain their virulence. This problem is compounded by the observation that injured bacteria are recovered at significantly lower frequencies using standard agar plate assays, leading to an underestimation of infection risks. Escherichia coli O157:H7 was exposed to 0.5 ppm free chlorine, retained on membrane filters and tested for physiological activity using a variety of assays.
Technical Paper

Microbial Contamination Monitoring of Space Stations: PCR Analysis for Downloaded Samples of EUROMIR'95 Experiment T2

1998-07-13
981762
Experiment T2, carried out during the EUROMIR'95 mission, demonstrated that microbial contamination can be directly monitored on board, thanks to innovative sampling and analysis methods. After flight, part of T2 downloaded samples were analysed by a method based on polymerase chain reaction (PCR). The analyses were aimed at quantifying both bacteria and fungi on the same sample. Although this activity was initially considered a simple adjustment of the PCR technique, the dramatic originality of its features was soon clear, especially due to partial readiness or unavailability of suitable tools and information. Work and results are described in the paper. A sensitivity of one micro-organism per sample was obtained, with bacteria and fungi detected in the same sample.
Technical Paper

Waste Incineration for Resource Recovery in Bioregenerative Life Support Systems

1998-07-13
981758
Over the last three years, the University of Utah (UofU), NASA Ames Research Center (ARC), and Reaction Engineering International (REI) have been developing an incineration system for the regeneration of components in waste materials for long-term life support systems. The system includes a fluidized bed combustor and a catalytic flue gas clean up system. An experimental version of the incinerator was built at the UofU. The incinerator was tested and modified at ARC and then operated during the Phase III human testing at NASA Johnson Space Center (JSC) during 1997. This paper presents the results of the work at the three locations: the design and testing at UofU, the testing and modification at ARC, and the integration and operation during the Phase III tests at JSC.
Technical Paper

Novel Regenerable Incinerator Exhaust Purification and Trace Contaminant Control System Utilizing Humidity Swings

1998-07-13
981760
This paper offers a concept for a regenerable, low-power system for purifying exhaust from a solid waste processor. The innovations in the concept include the use of a closed-loop regeneration cycle for the adsorber, which prevents contaminants from reaching the breathable air before they are destroyed, and the use of a humidity-swing desorption cycle, which uses less power than a thermal desorption cycle and requires no venting of air and water to space vacuum or planetary atmosphere. The process would also serve well as a trace contaminant control system for the air in the closed environment. A systems-level design is presented that shows how both the exhaust and air purification tasks could be performed by one processor. Data measured with a fixed-bed apparatus demonstrate the effects of the humidity swing on regeneration of the adsorbent.
Technical Paper

Results of the Risk Mitigation Experiment for the Volatile Organic Analyzer

1998-07-13
981745
A volatile organic analyzer (VOA), developed by Graseby Dynamics, Ltd. under contract to the Johnson Space Center Toxicology Laboratory, is the core instrument for trace contaminant monitoring on the International Space Station (ISS). The VOA will allow trace amounts of target compounds to be analyzed in real time so that ISS air quality can be assessed in nominal and contingency situations. Recent events on Mir have underscored the need for real-time analysis of air quality so that the crew can respond promptly during off-nominal conditions. The VOA, which is based on gas chromatography/ion mobility spectrometry, is the first spacecraft instrument to be used for such a complex task. Consequently, a risk mitigation experiment (VOA/RME) was flown to assess the performance and engineering aspects of the VOA. This paper is a review of VOA/RME results from the STS-81 and STS-89 flights and their implications for the ISS VOA design and operations.
Technical Paper

The Application of Grab and Time Integrated Sampling to the Characterization of Trace Contaminants Contributed by the Docking and Integration of the Priroda Module to Space Station Mir

1998-07-13
981744
The docking and integration of the Priroda module into the Space Station Mir Complex in 1996 provided a unique opportunity to assess the potential impact on the trace contaminant concentrations in the station complex. Since Priroda was substantially loaded with new US flight hardware, the data are potentially relevant to future similar operations associated with the buildup of the International Space Station. Grab samples were collected to assess the Priroda concentrations prior to integration and to capture the profile of concentrations after the start of Priroda inter-module ventilation. A long term time integrated sampler was configured for collection of canister samples over a time interval of seven days.
Technical Paper

Strategy for Monitoring Trace Contaminants on International Space Station

1998-07-13
981742
The complexity of the atmosphere aboard the International Space Station (ISS) will require a multifaceted monitoring strategy for both nominal and emergency conditions to protect the health and safety of the crew. Samples to be collected for air-quality assessment will include both archival sampling for ground analysis and on-board automatic analyses. Archival samples will be analyzed after return by standard gas chromatography/mass spectrometry; a separate formaldehyde analysis will be conducted as well. On-orbit analyses are planned for specific combustion products and for specific volatile organic compounds of toxicological significance. The air-lock will be monitored after EVAs to ensure that no propellants are introduced into the cabin atmosphere. Additional remote samples can be collected in sample bags from other ISS elements and brought to the Volatile Organic Analyzer (VOA) for analysis.
Technical Paper

Direct Sampling Ion Trap Mass Spectrometry - A Growing Toolkit for Air Quality Monitoring Applications

1998-07-13
981743
The recent development of a collection of techniques referred to as direct sampling ion trap mass spectrometry (DSITMS) shows great promise for real-time, high-throughput, low-cost screening of environmental pollutants in air. One of its great strengths is the flexibility it allows the user in choosing among different sample introduction systems, ionization modes, and scan modes. This paper delineates the various stages involved in a DSITMS analysis, describes the options and great flexibility inherent in each of these stages, and demonstrates the use of DSITMS techniques for monitoring trace levels of volatile organic compounds (VOCs) in Mir space station air samples.
X