Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Measurement Uncertainty and Its Influence on E-Drive Optimization Applications

2024-01-16
2024-26-0097
This paper gives insights in the theoretical measurement uncertainty of E-Drive rotor position dependent results, like Id and Iq calculations, done by a modern propulsion power analyzer (PA). The calculation of Id and Iqis fundamental to perform control optimization and application tasks for an E-Drive system. To optimize the E-Drive system application towards e.g., best efficiency, best performance, or improved NVH the importance of the testing toolchain is described: a power analyzer delivering the required results, an automation system, and a Design of Experiment tool to set improved target values. Consequently, inverters applications featuring field-oriented control (FOC) with permanent magnet synchronous machines (PMSM) are updated with a chosen control strategy. For achieving a certain behavior of an E-Drive, different degrees of freedom in the Inverter Control Unit are available; Lookup tables Id and Iq represent two fundamental application labels to be considered.
Journal Article

Overview of Soot Emission Measurements Instrumentation: From Smoke and Filter Mass to Particle Number

2013-03-25
2013-01-0138
Particulate emissions cause adverse health effects and for this reason they are regulated since the 80s. Vehicle regulations cover particulate emission measurements of a model before its sale, known as type approval or homologation. For heavy-duty engines the emissions are measured on an engine dynamometer with steady state points and transient cycles. For light-duty vehicles (i.e. the full power train) the particulate emissions are assessed on a chassis dynamometer. The measurement of particulate emissions is conducted either by diluting the whole exhaust in a dilution tunnel with constant volume sampling or by extracting a small proportional part of the exhaust gas and diluting it. Particulate emissions are measured by passing part of the diluted exhaust aerosol through a filter paper. The increase of the weight of the filter is used to calculate the particulate matter mass (PM) emissions.
Technical Paper

A Novel Ultrasonic Intake Air Flow Meter for Test Bed Applications

2013-01-09
2013-26-0118
The development process of a combustion engine is now a days strongly influenced by future emission regulations which require further reduction in fuel consumption and precise control of combustion process based on Intake air measurement, during engine development. Intake air flow meters clearly differentiate themselves from typical industrial gas flow meters because of their ability to measure extremely dynamic phenomenon of combustion engine. Thus, high internal data acquisition rate, short response time, ability to measure pulsating and reverse flows with lower measurement uncertainty are the factors that ensures the reliability of the results without being affected by ambient influences, sensor contamination or sensor aging. The AVL developed FLOWSONIX™ is based on ultrasonic transit time measuring principle with broad-band Capacitive Ultrasonic Transducer (CUT) characterized by an excellent air impedance matching strongly distinguishes itself by fulfilling all those requirements.
Technical Paper

OBD Algorithms: Model-based Development and Calibration

2007-10-30
2007-01-4222
The OBD II and EOBD legislation have significantly increased the number of system components that have to be monitored in order to avoid emissions degradation. Consequently, the algorithm design and the related calibration effort is becoming more and more challenging. Because of decreasing OBD thresholds, the monitoring strategy accuracy, which is tightly related with the components tolerances and the calibration quality, has to be improved. A model-based offline simulation of the monitoring strategies allows consideration of component and sensor tolerances as well as a first calibration optimization in the early development phase. AVL applied and improved a methodology that takes into account this information, which would require a big effort using testbed or vehicle measurements. In many cases a component influence analysis is possible before hardware is available for testbed measurements.
Technical Paper

Catalytic Converters in a 1d Cycle Simulation Code Considering 3d Behavior

2003-03-03
2003-01-1002
The objective of this study to introduce the newly developed Discrete Channel Method (DCM) as a fast and efficient method for the prediction of the 3d and transient behavior of honeycomb-type catalytic converters in automotive applications. The approach is based on the assumption that the regions between the channels are treated as a reactor with a homogeneously distributed heat source due to chemical conversion. Therefore, each radial direction can be described by a center, a boundary and only a few intermediate channels between them. The discrete channels are described by transient, 1d conservation equations that characterize the behavior of channels at different radial positions. The heat entering and leaving each discrete channel is evaluated by the gradients of the temperature field in conjunction with the heat conductivity of the substrate. The approach is validated by experimental data and serves as a module in the thermodynamic and engine analysis design tool BOOST.
Technical Paper

Diesel Particulate Measurement with Partial Flow Sampling: Systems A New Probe and Tunnel Design that Correlates with Full Flow Tunnels

2002-03-04
2002-01-0054
Partial flow sampling methods in emissions testing are interesting and preferred because of their lower cost, smaller size and applicability to engines of all sizes. However the agreement of the results obtained with instruments based on this method to those obtained with the traditional, large tunnel full flow sampling systems needs to be achieved, and the factors of construction that influence this agreement must be understood. These issues have received more attention lately in connection with ISO and WHDC standardization efforts underway to achieve a world-wide harmony in the sampling methods for heavy duty diesel engines, and with the introduction of similar Bag-minidiluter techniques into light duty SULEV gaseous pollutant measurement. This paper presents the theory and practice of a partial flow probe and tunnel design that addresses and minimizes the undesirable effects of the necessary differences between the two sampling methods.
Technical Paper

Study of Interferences for ULEV-CVS Measurement, Related to the Complete Measuring System, Discussion of Error Sources, Cross-Sensitivity and Adsorption

2000-03-06
2000-01-0796
Bag emission measurements on Ultra Low Emission Vehicles require measurement sensitivities in the 1 ppm range for HC and NOx and measurement resolutions well below this to obtain sufficient accuracy and repeatability. Additionally, an analysis of the C2 to C12 components is required. In these emission ranges, adsorption, desorption, diffusion and chemical reaction processes may produce significant effects to the measuring values. Therefore, improvements are necessary to avoid this as far as possible. However, for physical reasons these effects cannot be eliminated completely. For example: Particle filters are not 100% efficient and particles will slowly contaminate the surfaces. Due to physical and chemical processes with some gas components, even stainless steel and Teflon can change their characteristics. Problems resulting from the physical and chemical effects and provisions to minimize the influences to the measuring accuracy and system stability are discussed.
Technical Paper

ULEV and Fuel Economy - A Contradiction?

2000-03-06
2000-01-1209
The CBR (Controlled Burn Rate) technology for MPFI engines is known to enable the reduction of throttle losses of gasoline engines by high EGR (Exhaust Gas Recirculation) rates due to the dilution tolerance of the swirl charge motion system using port deactivation. Now a new aspect of CBR is being developed: extremely low emissions during and after cold start. This paper is focused on the combustion stability and low emission aspects of CBR technology. It is shown how engine out emissions and catalyst light off behavior of an engine can be significantly improved using port deactivation. The very stable combustion directly after engine start, extremely retarded ignition timings in combination with lean engine operation and open valve injection with minimized wall wetting lead to very low HC emissions and very high exhaust gas temperatures.
Technical Paper

Turbocharging the DI Gasoline Engine

2000-03-06
2000-01-0251
Regarding concepts for naturally aspirated engines, the high potential for fuel economy of Gasoline Direct Injection can only partially be utilized within the constraints of current or future emission legislation like EURO III / IV or LEV/ULEV. Instead of an expected improvement of 20 - 25 % currently only 10 - 15% can be obtained by the engine alone without vehicle optimizations considering all limitations of high volume production. A detailed analysis reveals concrete measures for further improvement. The application of DI gasoline technology clearly favors the combination with other fuel efficient technologies like downsizing by turbocharging and the application of a variable effective compression ratio by intake valve timing variation. Using the flexibility of direct gasoline injection some deficiencies of these technologies can be eliminated.
Technical Paper

ULEV Potential of a DI/TCI Diesel Passenger Car Engine Operated on Dimethyl Ether

1995-12-01
952754
The paper describes a feasibility test program on a 2 liter, 4 cylinder DI/TCI passenger car engine operated on the new alternative fuel Dimethyl Ether (DME, CH3 - O - CH3) with the aim of demonstrating its potential of meeting ULEV emissions (0.2 g/mi NOx in the FTP 75 test cycle) when installed in a full size passenger car. Special attention is drawn to the fuel injection equipment (FIE) as well as combustion system requirements towards the reduction of NOx and combustion noise while keeping energetic fuel consumption at the level of the baseline DI/TCI diesel engine. FIE and combustion system parameters were optimized on the steady state dynamometer by variation of a number of parameters, such as rate of injection, number of nozzle holes, compression ratio, piston bowl shape and exhaust gas recirculation.
Technical Paper

Improvement of LEV/ULEV Potential of Fuel Efficient High Performance Engines

1992-02-01
920416
The combined requirement of achieving CAFE values between 32 to 38 mpg plus LEV/ULEV emission standards to comply with US legal requirements between 1995 and 2000 represents the most demanding challenge for engine engineering. Thus all possible methods of engine improvement towards fuel economy and emissions have to be considered. Besides using new ideas also the methods of engine development have to be modernized to cope with the challenge. The paper presents advanced combustion and exhaust gas aftertreatment systems which combine high power output, favourable torque characteristics and high fuel economy with the potential for obtaining LEV/ULEV emission values, as well as improved development techniques.
X