Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Challenges of Digital Twin in High Value Manufacturing

2018-10-30
2018-01-1928
Digital Twin (DT) is a dynamic digital representation of a real-world asset, process or system. Industry 4.0 has recognised DT as the game changer for manufacturing industries in their digital transformation journey. DT will play a significant role in improving consistency, seamless process development and the possibility of reuse in subsequent stages across the complete lifecycle of the product. As the concept of DT is novel, there are several challenges that exist related to its phase of development and implementation, especially in high value manufacturing sector. The paper presents a thematic analysis of current academic literature and industrial knowledge. Based on this, eleven key challenges of DT were identified and further discussed. This work is intended to provide an understanding of the current state of knowledge around DT and formulate the future research directions.
Technical Paper

Light Weight Aerospace Assembly Fixture

2015-09-15
2015-01-2496
There is the need to strive towards more advanced aircraft with the use of materials such as composites, and a desire to improve efficiency by achieving and maintaining laminar flow over a large proportion of the aircraft wing. Due to the high tolerances required to achieve laminar flow, the manufacturing processes and tooling will have to be revaluated to enable successful manufacture in a production environment. A major influence in achieving the key characteristics and tolerances is the assembly fixture. This paper details the design and manufacture of a carbon fibre based assembly fixture, required for a one-off build of an innovative leading edge wing concept. The fixture has been designed and optimised in order to make it adaptable, reconfigurable, and suitable for lifting as well as being thermally stable whilst maintaining laminar flow tolerances.
Journal Article

Methodology for Classification of Shim Materials

2014-09-16
2014-01-2253
As a result of the increasing use of fibre reinforced plastic (FRP) components in a modern commercial aircraft, manufacturers are facing new challenges - especially with regards to the realisation of significant build rates. One challenge is the larger variation of the thickness of FRP components compared with metal parts that can normally be manufactured within a very narrow thickness tolerance bandwidth. The larger thickness variation of composite structures has an impact on the shape of the component and especially on the surfaces intended to be joined together with other components. As a result, gaps between the components to be assembled could be encountered. However, from a structural point of view, gaps can only be accepted to a certain extent in order to maintain the structural integrity of the joint. Today's state of the art technologies to close gaps between FRP structures comprise shimming methods using liquid and solid shims.
Journal Article

Implementing Determinate Assembly for the Leading Edge Sub-Assembly of Aircraft Wing Manufacture

2014-09-16
2014-01-2252
The replacement for the current single-aisle aircraft will need to be manufactured at a rate significantly higher that of current production. One way that production rate can be increased is by reducing the processing time for assembly operations. This paper presents research that was applied to the build philosophy of the leading edge of a laminar flow European wing demonstrator. The paper describes the implementation of determinate assembly for the rib to bracket assembly interface. By optimising the diametric and the positional tolerances of the holes on the two bracket types and ribs, determinate assembly was successfully implemented. The bracket to rib interface is now secured with no tooling or post processes other than inserting and tightening the fastener. This will reduce the tooling costs and eliminates the need for local drilling, de-burring and re-assembly of the bracket to rib interface, reducing the cycle time of the operation.
X