Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Empirical Equations of Changes in Aerodynamic Drag Based on Direct On-Track Road Load Measurements for Multi-Vehicle Platoons

2023-04-11
2023-01-0830
Considerable effort is currently being focused on emerging vehicle automation technologies. Engineers are making great strides in improving safety and reliability, but they are also exploring how these new technologies can enhance energy efficiency. This study focuses on the changes in aerodynamic drag associated with coordinated driving scenarios, also known as “platooning.” To draw sound conclusions in simulation or experimental studies where vehicle speed and gaps are controlled and coordinated, it is necessary to have a robust quantitative understanding of the road load changes associated with each vehicle in the platoon. Many variables affect the drag of each vehicle, such as each gap length, vehicle type/size, vehicle order and number of vehicles in the platoon. The effect is generally understood, but there are limited supporting data in the literature from actual test vehicles driving in formation.
Technical Paper

Evaluating Class 6 Delivery Truck Fuel Economy and Emissions Using Vehicle System Simulations for Conventional and Hybrid Powertrains and Co-Optima Fuel Blends

2022-09-13
2022-01-1156
The US Department of Energy’s Co-Optimization of Engine and Fuels Initiative (Co-Optima) investigated how unique properties of bio-blendstocks considered within Co-Optima help address emissions challenges with mixing controlled compression ignition (i.e., conventional diesel combustion) and enable advanced compression ignition modes suitable for implementation in a diesel engine. Additionally, the potential synergies of these Co-Optima technologies in hybrid vehicle applications in the medium- and heavy-duty sector was also investigated. In this work, vehicles system were simulated using the Autonomie software tool for quantifying the benefits of Co-Optima engine technologies for medium-duty trucks. A Class 6 delivery truck with a 6.7 L diesel engine was used for simulations over representative real-world and certification drive cycles with four different powertrains to investigate fuel economy, criteria emissions, and performance.
Technical Paper

Medium- and Heavy-Duty Value of Technology Improvement

2022-03-29
2022-01-0529
Improvements in vehicle technology impact the purchase price of a vehicle and its operating cost. In this study, the monetary benefit of a technology improvement includes the potential reduction in vehicle price from using cheaper or smaller components, as well as the discounted value of the fuel cost savings. As technology progresses over time, the value and benefit of improving technology varies as well. In this study, the value of improving a few selected technologies (battery energy density, electric drive efficiency, tire rolling resistance, aerodynamics, light weighting) is studied and the value of the associated cost saving is quantified. The change in saving as a function of time, powertrain selection and vehicle type is also quantified. For example, a 10% reduction in aerodynamic losses is worth $24,222 today but only $8,810 in 2030 in an electric long haul truck. The decrease in value is primarily due to expected battery cost reduction over time.
Technical Paper

Performance of a Printed Bimetallic (Stainless Steel and Bronze) Engine Head Operating under Stoichiometric and Lean Spark Ignited (SI) Combustion of Natural Gas

2020-04-14
2020-01-0770
Additive manufacturing was used to fabricate a head for an automotive-scale single-cylinder engine operating on natural gas. The head was consisted of a bimetallic composition of stainless steel and bronze. The engine performance using the bimetallic head was compared against the stock cast iron head. The heads were tested at two speeds (1200 and 1800 rpm), two brake mean effective pressures (6 and 10 bar), and two equivalence ratios (0.7 and 1.0). The bimetallic head showed good durability over the test and produced equivalent efficiencies, exhaust temperatures, and heat rejection to the coolant to the stock head. Higher combustion temperatures and advanced combustion phasing resulted from use with the bimetallic head. The implication is that with optimization of the valve timing, an efficiency benefit may be realized with the bimetallic head.
Technical Paper

Analytical Approach to Characterize the Effect of Engine Control Parameters and Fuel Properties on ACI Operation in a GDI Engine

2020-04-14
2020-01-1141
Advanced compression ignition (ACI) operation in gasoline direct injection (GDI) engines is a promising concept to reduce fuel consumption and emissions at part load conditions. However, combustion phasing control and the limited operating range in ACI mode are a perennial challenge. In this study the combined impact of fuel properties and engine control strategies in ACI operation are investigated. A design of experiments method was implemented using a three level orthogonal array to determine the sensitivity of engine control parameters on the engine load, combustion noise and stability under low load ACI operation for three RON 98 gasoline fuels, each exhibiting disparate chemical composition. Furthermore, the thermodynamic state of the compression histories was studied with the aid of the pressure-temperature framework.
Journal Article

Detailed Analysis of U.S. Department of Energy Engine Targets Compared to Existing Engine Technologies

2020-04-14
2020-01-0835
The U.S. Department of Energy, Vehicle Technologies Office (U.S. DOE-VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that would enable the United States to burn less petroleum on the road. System simulation is an accepted approach for evaluating the fuel economy potential of advanced (future) technology targets. U.S. DOE-VTO defines the targets for advancement in powertrain technologies (e.g., engine efficiency targets, battery energy density, lightweighting, etc.) Vehicle system simulation models based on these targets have been generated in Autonomie, reflecting the different EPA classifications of vehicles for different advanced timeframes as part of the DOE Benefits and Scenario (BaSce) Analysis. It is also important to evaluate the progress of these component technical targets compared to existing technologies available in the market.
Technical Paper

Identification and Characterization of Steady Spray Conditions in Convergent, Single-Hole Diesel Injectors

2019-04-02
2019-01-0281
Reduced-order models typically assume that the flow through the injector orifice is quasi-steady. The current study investigates to what extent this assumption is true and what factors may induce large-scale variations. Experimental data were collected from a single-hole metal injector with a smoothly converging hole and from a transparent facsimile. Gas, likely indicating cavitation, was observed in the nozzles. Surface roughness was a potential cause for the cavitation. Computations were employed using two engineering-level Computational Fluid Dynamics (CFD) codes that considered the possibility of cavitation. Neither computational model included these small surface features, and so did not predict internal cavitation. At steady state, it was found that initial conditions were of little consequence, even if they included bubbles within the sac. They however did modify the initial rate of injection by a few microseconds.
Technical Paper

FD&E Total Life T-Sample Residual Stress Analytical Predictions and Measured Results

2019-04-02
2019-01-0528
The Society of Automotive Engineers Fatigue Design & Evaluation Committee [SAE FD&E] is actively working on a total life project for weldments, in which the welding residual stress is a key contributor to an accurate assessment of fatigue life. Physics-based welding process simulation and various types of residual stress measurements were pursued to provide a representation of the residual stress field at the failure location in the fatigue samples. A well-controlled and documented robotic welding process was used for all sample fabrications to provide accurate inputs for the welding simulations. One destructive (contour method) residual stress measurement and several non-destructive residual stress measurements-surface X-ray diffraction (XRD), energy dispersive X-ray diffraction (EDXRD), and neutron diffraction (ND)-were performed on the same or similarly welded samples.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Multi-dimensional Modeling of Non-equilibrium Plasma for Automotive Applications

2018-04-03
2018-01-0198
While spark-ignition (SI) engine technology is aggressively moving towards challenging (dilute and boosted) combustion regimes, advanced ignition technologies generating non-equilibrium types of plasma are being considered by the automotive industry as a potential replacement for the conventional spark-plug technology. However, there are currently no models that can describe the low-temperature plasma (LTP) ignition process in computational fluid dynamics (CFD) codes that are typically used in the multi-dimensional engine modeling community. A key question for the engine modelers that are trying to describe the non-equilibrium ignition physics concerns the plasma characteristics. A key challenge is also represented by the plasma formation timescale (nanoseconds) that can hardly be resolved within a full engine cycle simulation.
Journal Article

High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector

2017-03-28
2017-01-0824
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. The pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offs in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution.
Technical Paper

Investigation of Transmission Warming Technologies at Various Ambient Conditions

2017-03-28
2017-01-0157
This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a highly instrumented 2011 Ford Fusion (Taurus and Fusion). The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the instrumented Fusion was tested cold and with the transmission pre-heated prior to completing the test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions.
Technical Paper

Proof-of-Concept Numerical Study for NOx Reduction in Diesel Engines Using Enriched Nitrogen and Enriched Oxygen

2016-09-27
2016-01-8082
The medium and heavy duty vehicle industry has fostered an increase in emissions research with the aim of reducing NOx while maintaining power output and thermal efficiency. This research describes a proof-of-concept numerical study conducted on a Caterpillar single-cylinder research engine. The target of the study is to reduce NOx by taking a unique approach to combustion air handling and utilizing enriched nitrogen and oxygen gas streams provided by Air Separation Membranes. A large set of test cases were initially carried out for closed-cycle situations to determine an appropriate set of operating conditions that are conducive for NOx reduction and gas diffusion properties. Several parameters - experimental and numerical, were considered. Experimental aspects, such as engine RPM, fuel injection pressure, start of injection, spray inclusion angle, and valve timings were considered for the parametric study.
Journal Article

Real-World Thermal Effects on Wheel Assembly Efficiency of Conventional and Electric Vehicles

2016-04-05
2016-01-0236
It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts.
Technical Paper

Effect of Fast Charging of Lithium-Ion Cells: Performance and Post-Test Results

2016-04-05
2016-01-1194
The effect of charge rate was determined using constant-current (CC) and the USABC Fast-Charge (FC) tests on commercial lithium-ion cells. Charging at high rates caused performance decline in the cells. Representing the resistance data as ΔR vs. Rn-1 plots was shown to be a viable method to remove the ambiguity inherent in the time-based analyses of the data. Comparing the ΔR vs. Rn-1 results, the change in resistance was proportional to charge rate in both the CC and FC cell data, with the FC cells displaying a greater rate of change. Changes, such as delamination, at the anode were seen in both CC and FC cells. The amount of delamination was proportional to charge rate in the CC cells. No analogous trend was seen in the FC cells; extensive delamination was seen in all cases. These changes may be due to the interaction of processes, such as lithium plating and i2R heating.
Journal Article

LES of Diesel and Gasoline Sprays with Validation against X-Ray Radiography Data

2015-04-14
2015-01-0931
This paper focuses on detailed numerical simulations of direct injection diesel and gasoline sprays from production grade, multi-hole injectors. In a dual-fuel engine the direct injection of both the fuels can facilitate appropriate mixture preparation prior to ignition and combustion. Diesel and gasoline sprays were simulated using high-fidelity Large Eddy Simulations (LES) with the dynamic structure sub-grid scale model. Numerical predictions of liquid penetration, fuel density distribution as well as transverse integrated mass (TIM) at different axial locations versus time were compared against x-ray radiography data obtained from Argonne National Laboratory. A necessary, but often overlooked, criterion of grid-convergence is ensured by using Adaptive Mesh Refinement (AMR) for both diesel and gasoline. Nine different realizations were performed and the effects of random seeds on spray behavior were investigated.
Journal Article

Control Analysis under Different Driving Conditions for Peugeot 3008 Hybrid 4

2014-04-01
2014-01-1818
This paper includes analysis results for the control strategy of the Peugeot 3008 Hybrid4, a diesel-electric hybrid vehicle, under different thermal conditions. The analysis was based on testing results obtained under the different thermal conditions in the Advanced Powertrain Research Facility (APRF) at Argonne National Laboratory (ANL). The objectives were to determine the principal concepts of the control strategy for the vehicle at a supervisory level, and to understand the overall system behavior based on the concepts. Control principles for complex systems are generally designed to maximize the performance, and it is a serious challenge to determine these principles without detailed information about the systems. By analyzing the test results obtained in various driving conditions with the Peugeot 3008 Hybrid4, we tried to figure out the supervisory control strategy.
Technical Paper

Development of a Fast, Robust Numerical Tool for the Design, Optimization, and Control of IC Engines

2013-09-08
2013-24-0141
This paper discusses the development of an integrated tool for the design, optimization, and real-time control of engines from a performance and emissions standpoint. Our objectives are threefold: (1) develop a tool that computes the engine performance and emissions on the order of a typical engine cycle (25-50 milliseconds); (2) enable the use of the tool for a wide variety of engine geometries, operating conditions, and fuels with minimal user changes; and (3) couple the engine module to an efficient optimization module to enable real-time control and optimization. The design tool consists of two coupled modules: an engine module and an optimization module.
Journal Article

Efficient, Active Radiator-Cooling System

2013-05-15
2013-01-9017
A new concept for an efficient radiator-cooling system is presented for reducing the size or increasing the cooling capacity of vehicle coolant radiators. Under certain conditions, the system employs active evaporative cooling in addition to conventional finned air cooling. In this regard, it is a hybrid radiator-cooling system comprised of the combination of conventional air-side finned surface cooling and active evaporative water cooling. The air-side finned surface is sized to transfer required heat under all driving conditions except for the most severe. In the later case, evaporative cooling is used in addition to the conventional air-side finned surface cooling. Together the two systems transfer the required heat under all driving conditions. However, under most driving conditions, only the air-side finned surface cooling is required. Consequently, the finned surface may be smaller than in conventional radiators that utilize air-side finned surface cooling exclusively.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part I - Methodology and Scenario Definition

2013-04-08
2013-01-1144
The U.S. Renewable Fuel Standard (RFS2) requires an increase in the use of advanced biofuels up to 36 billion gallons by 2022. Longer chain alcohols, in addition to cellulosic ethanol and synthetic biofuels, could be used to meet this demand while adhering to the RFS2 corn-based ethanol limitation. Higher carbon number alcohols can be utilized to improve the energy content, knock resistance, and/or petroleum displacement of gasoline-alcohol blends compared to traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part I of this paper focuses on the development of scenarios by which to compare higher alcohol fuel blends to traditional ethanol blends. It also details the implementation of fuel property prediction methods adapted from literature. Possible combinations of eight alcohols mixed with a gasoline blendstock were calculated and the properties of the theoretical fuel blends were predicted.
X