Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Further Investigations on the Flow Around a Rotating, Isolated Wheel with Detailed Tread Pattern

2015-04-14
2015-01-1554
Efforts in aerodynamic optimization of road vehicles have been steadily increasing in recent years, mainly focusing on the reduction of aerodynamic drag. Of a car's total drag, wheels and wheel houses account for approx. 25 percent. Consequently, the flow around automotive wheels has lately been investigated intensively. Previously, the authors studied a treaded, deformable, isolated full-scale tire rotating in contact with the ground in the wind tunnel and using the Lattice-Boltzmann solver Exa PowerFLOW. It was shown that applying a common numerical setup, with velocity boundary condition prescribed on the tread, significant errors were introduced in the simulation. The contact patch separation was exaggerated and the flow field from wind tunnel measurements could not be reproduced. This investigation carries on the work by examining sensitivities and new approaches in the setup.
Technical Paper

Needs and Possibilities for the Correction of Drag and Lift Wheel Forces which have been Derived by Integrating its Static Pressure Distribution

2006-12-05
2006-01-3623
Knowing the wheel forces on a vehicle under various circumstances and configurations is essential for its aerodynamic development. This becomes crucial when dealing with a racing car. This was the driving force for the initial research conducted in the BMW Aerodynamics Department [1] concerning the aerodynamic forces of an isolated 1:2 racing wheel. The latter were determined for various arrangements with the use of a system equipped with pressure transducers distributed on the wheel surface. While the pressure wheel is adequate for revealing flow structures surrounding it as well as highlighting its physics, it is nevertheless insufficient for the prediction of the wheel forces with high accuracy. As will be shown, this is mainly the consequence of the absent contribution of skin friction, the mathematical method engaged in post–processing and the restricted number of pressure transducers.
Technical Paper

Aerodynamic Forces of Exposed and Enclosed Rotating Wheels as an Example of the Synergy in the Development of Racing and Passenger Cars

2006-04-03
2006-01-0805
The aim of this report is to present the results obtained from the wind tunnel tests performed in the BMW wind tunnel regarding the pressure distribution on a rotating wheel. The acquired data is used to examine its flow topology for the “open” and “enclosed” cases and determine the wheel drag, lift and side forces by integrating the pressure distribution on its surface. The investigation concerned such measurements on a half scale model wheel. Its pressure distribution was identified with and without the presence of a racecar body. The wheel was also mounted on a half scale passenger car body and pressure measurements were taken with and without a wheel spoiler. After the pressure distributions were known for all configurations, the aerodynamic forces generated were determined. The influence of boundary layer thickness on them was also investigated. A better understanding of the forces the model wheel is subjected to is gained.
Technical Paper

Active Steering - The BMW Approach Towards Modern Steering Technology

2004-03-08
2004-01-1105
For the first time, the BMW Active Steering system allows driver-independent steering intervention at the front axle with the mechanical link between the steering wheel and the front axle still in place. The system is primarily comprised of a rack-and-pinion steering system, a double planetary gear and an electric actuator motor. This new level of freedom enables continuous and situation-dependent variation of the steering ratio and therefore adaptation of the transmission behaviour between the steering wheel and the vehicle's reaction to the relevant driving situation. Comfort, steering effort, handling and directional stability have been extensively optimised as a result of this. In addition, driver-independent steering intervention also guarantees vehicle stabilisation in critical driving situations. As a world exclusive, the new Active Steering system will be available for the first time as an option in the new BMW 5 Series.
X