Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Modeling and Design of a Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) Engine

2015-09-01
2015-01-1970
Engine downsizing of the spark ignition gasoline engine is recognized as one of the most effective approaches to improve the fuel economy of a passenger car. However, further engine downsizing beyond 50% in a 4-stroke gasoline engine is limited by the occurrence of abnormal combustion events as well as much greater thermal and mechanical loads. In order to achieve aggressive engine downsizing, a boosted uniflow scavenged direct injection gasoline (BUSDIG) engine concept has been proposed and researched by means of CFD simulation and demonstration in a single cylinder engine. In this paper, the intake port design on the in-cylinder flow field and gas exchange characteristics of the uniflow 2-stroke cycle was investigated by computational fluid dynamics (CFD). In particular, the port orientation on the in-cylinder swirl, the trapping efficiency, charging efficiency and scavenging efficiency was analyzed in details.
Technical Paper

Effects of Ethanol on Performance and Exhaust Emissions from a DI Spark Ignition Engine with Throttled and Unthrottled Operations

2014-04-01
2014-01-1393
In recent years, in order to develop more efficient and cleaner gasoline engines, a number of new engine operating strategies have been proposed and many have been studied on different engines but there is a lack of comparison between various operating strategies and alternative fuels at different SI modes. In this research, a single cylinder direct injection gasoline engine equipped with an electro-hydraulic valve train system has been commissioned and used to study and compare different engine operation modes. In this work, the fuel consumption, gaseous and particulate emissions of gasoline and its mixture with ethanol (E15 and E85) were measured and analysed when the engine was operated at the same load but with different load control methods by an intake throttle, reduced intake valve duration, and positive overlap.
Technical Paper

Lubricant Induced Pre-Ignition in an Optical SI Engine

2014-04-01
2014-01-1222
This work was concerned with study of lubricant introduced directly into the combustion chamber and its effect on pre-ignition and combustion in an optically accessed single-cylinder spark ignition engine. The research engine had been designed to incorporate full bore overhead optical access capable of withstanding peak in-cylinder pressures of up to 150bar. An experiment was designed where a fully formulated synthetic lubricant was deliberately introduced through a specially modified direct fuel injector to target the exhaust area of the bore. Optical imaging was performed via natural light emission, with the events recorded at 6000 frames per second. Two port injected fuels were evaluated including a baseline commercial grade gasoline and low octane gasoline/n-heptane blend. The images revealed the location of deflagration sites consistently initiating from the lubricant itself.
Technical Paper

Investigation of Cylinder Deactivation and Variable Valve Actuation on Gasoline Engine Performance

2014-04-01
2014-01-1170
Increasingly stringent regulations on gasoline engine fuel consumption and exhaust emissions require additional technology integration such as Cylinder Deactivation (CDA) and Variable valve actuation (VVA) to improve part load engine efficiency. At part load, CDA is achieved by closing the inlet and exhaust valves and shutting off the fuel supply to a selected number of cylinders. Variable valve actuation (VVA) enables the cylinder gas exchange process to be optimised for different engine speeds by changing valve opening and closing times as well as maximum valve lift. The focus of this study was the investigation of effect of the integration of the above two technologies on the performance of a gasoline engine operating at part load conditions. In this study, a 1.6 Litre in-line 4-cylinder gasoline engine is modelled on engine simulation software and simulated data is analysed to show improvements in fuel consumption, CO2 emissions, pumping losses and effects on CO and NOx emissions.
Technical Paper

Dilution Effects on the Controlled Auto-Ignition (CAI) Combustion of Hydrocarbon and Alcohol Fuels

2001-09-24
2001-01-3606
This paper presents results from an experimental programme researching the in-cylinder conditions necessary to obtain homogenous CAI (or HCCI) combustion in a 4-stroke engine. The fuels under investigation include three blends of Unleaded Gasoline, a 95 RON Primary Reference Fuel, Methanol, and Ethanol. This work concentrates on establishing the CAI operating range with regard to Air/Fuel ratio and Exhaust Gas Re-circulation and their effect on the ignition timing, combustion rate and variability, Indicated thermal efficiency, and engine-out emissions such as NOx. Detailed maps are presented, defining how each of the measured variables changes over the entire CAI region. Results indicate that the alcohols have significantly higher tolerance to dilution than the hydrocarbon fuels tested. Also, variations in Gasoline blend have little effect on any of the combustion parameters measured.
Technical Paper

A Model of Droplet Thermodynamic and Dynamic Behaviour in the Port of a Port-Injected Engine

1996-02-01
960467
A mathematical model has been developed which describes the evaporation and trajectories of fuel droplets during their flight in the inlet manifold of port-injected gasoline engines. Based on the model, a computer simulation program was developed, and sample results of this program are given in this paper. Extensive results obtained using the simulation program are described in a companion paper. The simulation program can be used as a tool to improve understanding of mixture preparation in port injected engines. Such effects as: engine load and speed, air and fuel temperature, fuel type, fuel injection velocity, injection timing, and spray droplet size can be investigated.
Technical Paper

The Detection and Quantification of Knock in Spark Ignition Engines

1993-10-01
932759
A brief review is included of previous work aimed at quantifying the knock intensity from cylinder pressure measurements. This is used to identify some of the methods used in the current study. Digital signal processing techniques are also discussed, since their application to non-repetitive truncated signals can lead to results that are dependent on the techniques used. These problems are illustrated with some examples of windowing, and non-linear phase shift filters. A good correlation is demonstrated between knock severity indices calculated with energy methods in the time domain and the frequency domain. It is argued that it is easier to implement such knock indices in the lime domain. Use has also been made of mass fraction burn calculations in conjunction with data for the onset of knock, for data recorded simultaneously by two different pressure transducers.
X