Refine Your Search

Topic

Author

Search Results

Technical Paper

Modeling & Validation of a Digital Twin Tracked Vehicle

2024-04-09
2024-01-2323
Digital twin technology has become impactful in Industry 4.0 as it enables engineers to design, simulate, and analyze complex systems and products. As a result of the synergy between physical and virtual realms, innovation in the “real twin” or actual product is more effectively fostered. The availability of verified computer models that describe the target system is important for realistic simulations that provide operating behaviors that can be leveraged for future design studies or predictive maintenance algorithms. In this paper, a digital twin is created for an offroad tracked vehicle that can operate in either autonomous or remote-control modes. Mathematical models are presented and implemented to describe the twin track and vehicle chassis governing dynamics. These components are interfaced through the nonlinear suspension elements and distributed bogies.
Technical Paper

Data Driven Vehicle Dynamics System Identification Using Gaussian Processes

2024-04-09
2024-01-2022
Modeling uncertainties pose a significant challenge in the development and deployment of model-based vehicle control systems. Most model- based automotive control systems require the use of a well estimated vehicle dynamics prediction model. The ability of first principles-based models to represent vehicle behavior becomes limited under complex scenarios due to underlying rigid physical assumptions. Additionally, the increasing complexity of these models to meet ever-increasing fidelity requirements presents challenges for obtaining analytical solutions as well as control design. Alternatively, deterministic data driven techniques including but not limited to deep neural networks, polynomial regression, Sparse Identification of Nonlinear Dynamics (SINDy) have been deployed for vehicle dynamics system identification and prediction.
Technical Paper

Benchmarking of Neural Network Methodologies for Piston Thermal Model Calibration

2024-04-09
2024-01-2598
Design of internal combustion (IC) engine pistons is dependent on accurate prediction of the temperature field in the component. Experimental temperature measurements can be taken but are costly and typically limited to a few select locations. High-fidelity computer simulations can be used to predict the temperature at any number of locations within the model, but the models must be calibrated for the predictions to be accurate. The largest barrier to calibration of piston thermal models is estimating the backside boundary conditions, as there is not much literature available for these boundary conditions. Bayesian model calibration is a common choice for model calibration in literature, but little research is available applying this method to piston thermal models. Neural networks have been shown in literature to be effective for calibration of piston thermal models.
Technical Paper

Fuzzing CAN vs. ROS: An Analysis of Single-Component vs. Dual-Component Fuzzing of Automotive Systems

2024-04-09
2024-01-2795
Robust communications are crucial for autonomous military fleets. Ground vehicles function as mobile local area networks utilizing Controller Area Network (CAN) backbones. Fleet coordination between autonomous platforms relies on the Robot Operating System (ROS) publish/subscribe robotic middleware for effective operation. To bridge communications between the CAN and ROS network segments, the CAN2ROS bridge software supports bidirectional data flow with message mapping and node translation. Fuzzing, a software testing technique, involves injecting randomized data inputs into the target system. This method plays a pivotal role in identifying vulnerabilities. It has proven effective in discovering vulnerabilities in online systems, such as the integrated CAN/ROS system. In our study, we consider ROS implementing zero-trust access control policies, running on a Gazebo test-bed connected to a CAN bus.
Technical Paper

Machine Learning Approach for Open Circuit Fault Detection and Localization in EV Motor Drive Systems

2024-04-09
2024-01-2790
Semiconductor devices in electric vehicle (EV) motor drive systems are considered the most fragile components with a high occurrence rate for open circuit fault (OCF). Various signal-based and model-based methods with explicit mathematical models have been previously published for OCF diagnosis. However, this proposed work presents a model-free machine learning (ML) approach for a single-switch OCF detection and localization (DaL) for a two-level, three-phase inverter. Compared to already available ML models with complex feature extraction methods in the literature, a new and simple way to extract OCF feature data with sufficient classification accuracy is proposed. In this regard, the inherent property of active thermal management (ATM) based model predictive control (MPC) to quantify the conduction losses for each semiconductor device in a power converter is integrated with an ML network.
Technical Paper

Access Control Requirements for Autonomous Robotic Fleets

2023-04-11
2023-01-0104
Access control enforces security policies for controlling critical resources. For V2X (Vehicle to Everything) autonomous military vehicle fleets, network middleware systems such as ROS (Robotic Operating System) expose system resources through networked publisher/subscriber and client/server paradigms. Without proper access control, these systems are vulnerable to attacks from compromised network nodes, which may perform data poisoning attacks, flood packets on a network, or attempt to gain lateral control of other resources. Access control for robotic middleware systems has been investigated in both ROS1 and ROS2. Still, these implementations do not have mechanisms for evaluating a policy's consistency and completeness or writing expressive policies for distributed fleets. We explore an RBAC (Role-Based Access Control) mechanism layered onto ROS environments that uses local permission caches with precomputed truth tables for fast policy evaluation.
Technical Paper

A First Look at Android Automotive Privacy

2023-04-11
2023-01-0037
Android Automotive OS (AAOS) has been gaining popularity in recent years, with several OEMs across the world already deploying it or planning to in the near future. Besides the benefit of a well-known, customizable and secure operating system for OEMs, AAOS allows third-party app developers to offer their apps on vehicles of several manufacturers at the same time. Currently, there are 55 apps for AAOS that can be categorized as media, navigation or point-of-interest apps. Specifically the latter two categories allow the third-parties to collect certain sensor data directly from the vehicle. Furthermore, the latest version of AAOS also allows the OEM to configure and collect In-Vehicle Infotainment (IVI) and vehicle data (called OEM telemetry). However, increasing connectivity and integration with the in-vehicle network comes at the expense of user privacy. Previous works have shown that vehicular sensor data often contains personally identifiable information (PII).
Technical Paper

Utilizing Neural Networks for Semantic Segmentation on RGB/LiDAR Fused Data for Off-road Autonomous Military Vehicle Perception

2023-04-11
2023-01-0740
Image segmentation has historically been a technique for analyzing terrain for military autonomous vehicles. One of the weaknesses of image segmentation from camera data is that it lacks depth information, and it can be affected by environment lighting. Light detection and ranging (LiDAR) is an emerging technology in image segmentation that is able to estimate distances to the objects it detects. One advantage of LiDAR is the ability to gather accurate distances regardless of day, night, shadows, or glare. This study examines LiDAR and camera image segmentation fusion to improve an advanced driver-assistance systems (ADAS) algorithm for off-road autonomous military vehicles. The volume of points generated by LiDAR provides the vehicle with distance and spatial data surrounding the vehicle.
Technical Paper

Evaluating Drivers’ Understanding of Warning Symbols Presented on In-Vehicle Digital Displays Using a Driving Simulator

2023-04-11
2023-01-0790
Since 1989, ISO has published procedures for developing and testing public information symbols (ISO 9186), while the SAE standard for in-vehicle icon comprehension testing (SAE J2830) was first published in 2008. Neither testing method was designed to evaluate the comprehension of symbols in modern vehicles that offer digital instrument cluster interfaces that afford new levels of flexibility to further improve drivers’ understanding of symbols. Using a driving simulator equipped with an eye tracker, this study investigated drivers’ understanding of six automotive symbols presented on in-vehicle displays. Participants included 24 teens, 24 adults, and 24 senior drivers. Symbols were presented in a symbol-only, symbol + short text descriptions, and symbol + long text description conditions. Participants’ symbol comprehension, driving performance, reaction times, and eye glance times were measured.
Technical Paper

Criticality Assessment of Simulation-Based AV/ADAS Test Scenarios

2022-03-29
2022-01-0070
Testing any new safety technology of Autonomous Vehicles (AV) and Advanced Driver Assistance Systems (ADAS) requires simulation-based validation and verification. The specific scenarios used for testing, outline incidences of accidents or near-miss events. In order to simulate these scenarios, specific values for all the above parameters are required including the ego vehicle model. The ‘criticality’ of a scenario is defined in terms of the difficulty level of the safety maneuver. A scenario could be over-critical, critical, or under-critical. In over-critical scenarios, it is impossible to avoid a crash whereas, for under-critical scenarios, no action may be required to avoid a crash. The criticality of the scenario depends on various parameters e.g. speeds, distances, road/tire parameters, etc. In this paper, we propose a definition of criticality metric and identify the parameters such that a scenario becomes critical.
Journal Article

Designing the Design Space: Evaluating Best Practices in Tradespace Exploration, Analysis and Decision-Making

2022-03-29
2022-01-0354
Determining the validity of the design space early in the conceptualization of a project can make the difference between project success and failure. Early assessment of technical feasibility, project risk, technical readiness and realistic performance expectations based on models with different levels of fidelity, uncertainty, and technical robustness is a challenging mission critical task for large procurement projects. Tradespace exploration uses model-based engineering analysis, design exploration methods, and multi-objective optimization techniques to enable project stakeholders to make informed decisions and tradeoffs concerning the scope, schedule, budget, performance and risk profile of a project. As the intersection with a number of project stakeholders, tradespace studies can provide a significant impact upon the direction and decision-making in a project.
Technical Paper

Selection of Surrogate Models with Metafeatures

2022-03-29
2022-01-0365
Modeling and simulation of ground vehicles can be a computationally expensive problem due to the complexity of high-fidelity vehicle models. Often to determine mobility metrics, multiple stochastic simulations need to be evaluated. Surrogate models, or models of models, offer a means to reduce the computational cost of these simulation efforts. Since various types of surrogate models are available to the user, choosing the best surrogate model for a simulation is mostly the challenging process. In this paper, the process of selecting surrogate models and its uses based on model metafeatures is presented. The approach formulates this decision as a trade-off among three main drivers, required dataset size (how much information is necessary to compute the surrogate model), surrogate model accuracy (how accurate the surrogate model must be) and total computational time (how much time is required for the surrogate modeling process).
Journal Article

Application of a Digital Twin Virtual Engineering Tool for Ground Vehicle Maintenance Forecasting

2022-03-29
2022-01-0364
The integration of sensors, actuators, and real-time control in transportation systems enables intelligent system operation to minimize energy consumption and maximize occupant safety and vehicle reliability. The operating cycle of military ground vehicles can be on- and off-road in harsh weather and adversarial environments, which demands continuous subsystem functionality to fulfill missions. Onboard diagnostic systems can alert the operator of a degraded operation once established fault thresholds are exceeded. An opportunity exists to estimate vehicle maintenance needs using model-based predicted trends and eventually compiled information from fleet operating databases. A digital twin, created to virtually describe the dynamic behavior of a physical system using computer-mathematical models, can estimate the system behavior based on current and future operating scenarios while accounting for past effects.
Journal Article

Elicitation, Computational Representation, and Analysis of Mission and System Requirements

2022-03-29
2022-01-0363
Strategies for evaluating the impact of mission requirements on the design of mission-specific vehicles are needed to enable project managers to assess potential benefits and associated costs of changes in requirements. Top-level requirements that cause significant cascaded difficulties on lower-level requirements should be identified and presented to decision-makers. This paper aims to introduce formal methods and computational tools to enable the analysis and allocation of mission requirements.
Journal Article

Approaches for Simulation Model Reuse in Systems Design — A Review

2022-03-29
2022-01-0355
In this paper, we review the literature related to the reuse of computer-based simulation models in the context of systems design. Models are used to capture aspects of existing or envisioned systems and are simulated to predict the behavior of these systems. However, developing such models from scratch requires significant time and effort. Researchers have recognized that the time and effort can be reduced if existing models or model components are reused, leading to the study of model reusability. In this paper, we review the tasks necessary to retrieve and reuse model components from repositories, and to prepare new models and model components such that they are more amenable for future reuse. Model reuse can be significantly enhanced by carefully characterizing the model, and capturing its meaning and intent so that potential users can determine whether the model meets their needs.
Technical Paper

Neural Network Design of Control-Oriented Autoignition Model for Spark Assisted Compression Ignition Engines

2021-09-05
2021-24-0030
Substantial fuel economy improvements for light-duty automotive engines demand novel combustion strategies. Low temperature combustion (LTC) demonstrates potential for significant fuel efficiency improvement; however, control complexity is an impediment for real-world transient operation. Spark-assisted compression ignition (SACI) is an LTC strategy that applies a deflagration flame to generate sufficient energy to trigger autoignition in the remaining charge. Operating a practical engine with SACI combustion is a key modeling and control challenge. Current models are not sufficient for control-oriented work such as calibration optimization, transient control strategy development, and real-time control. This work describes the process and results of developing a fast-running control-oriented model for the autoignition phase of SACI combustion. A data-driven model is selected, specifically artificial neural networks (ANNs).
Technical Paper

Implementation and Validation of Behavior Cloning Using Scaled Vehicles

2021-04-06
2021-01-0248
Recent trends in autonomy have emphasized end-to-end deep-learning-based methods that have shown a lot of promise in overcoming the requirements and limitations of feature-engineering. However, while promising, the black-box nature of deep-learning frameworks now exacerbates the need for testing with end-to-end deployments. Further, as exemplars of systems-of-systems, autonomous vehicles (AVs) engender numerous interconnected component-, subsystem and system-level interactions. The ensuing complexity creates challenges for verification and validation at the various component, subsystem- and system-levels as well as end-to-end testing. While simulation-based testing is one promising avenue, oftentimes the lack of adequate fidelity of AV and environmental modeling limits the generalizability. In contrast, full-scale AV testing presents the usual limitations of time-, space-, and cost.
Journal Article

Implementation Methodologies for Simulation as a Service (SaaS) to Develop ADAS Applications

2021-04-06
2021-01-0116
Over the years, the complexity of autonomous vehicle development (and concurrently the verification and validation) has grown tremendously in terms of component-, subsystem- and system-level interactions between autonomy and the human users. Simulation-based testing holds significant promise in helping to identify both problematic interactions between component-, subsystem-, and system-levels as well as overcoming delays typically introduced by the default full-scale on-road testing. Software in Loop (SiL) simulation is utilized as an intermediate step towards software deployment for autonomous vehicles (AV) to make them reliable. SiL efforts can help reduce the resources required for successful deployment by helping to validate the software for millions of road miles. A key enabler for accelerating SiL processes is the ability to use Simulation as a Service (SaaS) rather than just isolated instances of software.
Technical Paper

Teen Drivers’ Understanding of Instrument Cluster Indicators and Warning Lights from a Gasoline, a Hybrid and an Electric Vehicle

2020-04-14
2020-01-1199
In the U.S., the teenage driving population is at the highest risk of being involved in a crash. Teens often demonstrate poor vehicle control skills and poor ability to identify hazards, thus proper understanding of automotive indicators and warnings may be even more critical for this population. This research evaluates teen drivers’, between 15 to 17 years of age, understanding of symbols from vehicles featuring advanced driving assistant systems and multiple powertrain configurations. Teen drivers’ (N=72) understanding of automotive symbols was compared to three other groups with specialized driving experience and technical knowledge: automotive engineering graduate students (N=48), driver rehabilitation specialists (N=16), and performance driving instructors (N=15). Participants matched 42 symbols to their descriptions and then selected the five symbols they considered most important.
Technical Paper

Driver Drowsiness Behavior Detection and Analysis Using Vision-Based Multimodal Features for Driving Safety

2020-04-14
2020-01-1211
Driving inattention caused by drowsiness has been a significant reason for vehicle crash accidents, and there is a critical need to augment driving safety by monitoring driver drowsiness behaviors. For real-time drowsy driving awareness, we propose a vision-based driver drowsiness monitoring system (DDMS) for driver drowsiness behavior recognition and analysis. First, an infrared camera is deployed in-vehicle to capture the driver’s facial and head information in naturalistic driving scenarios, in which the driver may or may not wear glasses or sunglasses. Second, we propose and design a multi-modal features representation approach based on facial landmarks, and head pose which is retrieved in a convolutional neural network (CNN) regression model. Finally, an extreme learning machine (ELM) model is proposed to fuse the facial landmark, recognition model and pose orientation for drowsiness detection. The DDMS gives promptly warning to the driver once a drowsiness event is detected.
X