Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Cavitation Intensity Measurements for Internal Combustion Engines

1996-02-01
960884
Recent engine design trends towards increasing power, reducing weight, advancing of injection timing and increasing of injection rate and pressure could result in increased incidence of liner pitting. Liner pitting due to coolant cavitation is a complex function of many engine design parameters and operating conditions as described in reference [1]*. Traditionally, liner cavitation problems were not detected early in the development cycle. Traditional liner vibration and coolant pressure measurements in conjunction with a numerous amount of expensive engine endurance tests were then needed to resolve cavitation problems. A method newly developed by the author and described in reference [2] for cavitation intensity measurements was successfully utilized to map out engine operating condition and develop limit curves. This method could also be applied in a non intrusive fashion.
Technical Paper

Real Time Captivation Detection Method

1996-02-01
960878
Cavitation corrosion is a very complex phenomenon that is governed by a formidable amount of factors and parameters. The phenomenon is a multi-disciplinary one which involves several aspects of physical sciences and engineering. This process is a slow progressive phenomenon with its detrimental effects being felt after severe damage has already occurred. A real time detection method for the severity of fluid cavitation and bubble collapse is described. The results are correlated to dynamic instantaneous pressure fluctuation measurements. The method is fast, reliable, and less restrictive of the sensing location. It has been tested and verified through a specially designed cavitation test rig and instrumentation setup. The method can be used for cavitation studies on ultrasonic bench rig tests and for cavitation measurements on running engines. The method was used to shed some light on characteristic cavitation differences between water and glycol which is used in engine coolants.
Technical Paper

Testing Procedures for Introduction of Silicon Carbide and Carbon Water Pump Seal Faces into Heavy Duty Diesel Service

1993-03-01
930585
Testing procedures to evaluate new coolant pump seal face materials and new coolant pump seal designs were evaluated. Rig testing of materials and seals followed by engine dynamometer testing enabled changes in the seal materials or design to be validated prior to field testing and limited production. These procedures were used to test and implement a coolant pump seal face material change to silicon carbide versus carbon. The change resulted in higher reliability for the coolant pump seal and reduced warranty cost for the engine.
Technical Paper

Tribological Investigations for an Insulated Diesel Engine

1983-02-01
830319
A Minimum Cooled Engine (MCE) has been successfully run for 250 hours at rated condition of 298 kW and 1900 rpm. This engine was all metallic without any coolant in the block and lower part of the heads. Ring/liner/lubricant system and thermal loading on the liner at top ring reversal (TRR) as well as on the piston are presented and discussed. Ring/liner wear is given as well as oil consumption and blow-by data during the endurance run. Another engine build with a different top ring coating and several lubricants suggested that a 1500 hours endurance run of MCE is achievable. Rig test data for screening ring materials and synthetic lubricants necessary for a successful operation of a so-called Adiabatic Engine with the ring/ceramic liner (SiN) interface temperature up to 650°C are presented and discussed.
Technical Paper

Techniques of Structural Vibration Analysis Applied to Diesel Engine Noise Reduction

1975-02-01
750835
This paper presents several techniques used to define quantitatively the problem of excessive noise through engine structural vibration. These techniques include both operating engine tests and bench tests. In addition, analytical techniques are shown which give a better understanding of how the critical components within the engine cause this vibration. Through the use of analytical and experimental techniques, examples illustrate practical solutions for diesel engine noise reduction.
Technical Paper

Design Aspects of Low-Noise Diesel Engines

1973-02-01
730246
Methods of reducing the noise level of a diesel engine include the suppression of the major modes of block vibration and treatment of the external surfaces. Design methods enable the frequencies and noise levels of these modes to be calculated for a conventionally designed engine. The important modes of vibration, the noise signature and the effect of block modifications of a standard production V-8 engine were found by experiments. These provided the basis for the design of an experimental low-noise engine. Design features include a suffer block, removal of the bottom part of the crankcase skirt, the addition of a single bearing beam, and the use of isolated panels and damped surfaces. The noise reduction obtained was 9 dBA. Most of this is due to the use of isolated and damped nonload carrying surfaces.
X