Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Common Rail Multi-Jet Diesel Engine Combustion Model Development for Control Purposes

2007-04-16
2007-01-0383
Multi-jet injection strategies open significant opportunities for the combustion management of the modern diesel engine. Splitting up the injection process into 5 steps facilitates the proper design of the combustion phase in order to obtain the desired torque level, whilst attempting a reduction in emissions, particularly in terms of NOx. Complex 3-D models are needed in the design stage, where components such as the injector or combustion chamber shape have to be determined. Alternatively, zero-dimensional approaches are more useful when fast interpretation of experimental data is needed and an optimization of the combustion process should be obtained based on actual data. For example, zero-dimensional models allow a quick choice of optimum control settings for each engine operating condition, avoiding the need to test all the possible combinations of engine control parameters.
Technical Paper

Misfire Detection Based on Engine Speed Time-Frequency Analysis

2002-03-04
2002-01-0480
The paper presents the development of a methodology for detecting the misfire event using the time-frequency analysis of the instantaneous engine speed signal. The diagnosis of this type of malfunctioning operating condition is enforced by OBD requirements over the whole operating range of the engine, and many different approaches have been developed in the past in order to solve this problem. The novel approach presented here is based on the observation that the misfire causes an impulsive lack of torque acting on the engine crankshaft, and thus it causes the excitation of damped torsional vibrations at frequencies characteristic of the system under study. In order to enlighten the presence of this torsional vibration (and therefore detect the misfire event), information contained in the instantaneous crankshaft speed fluctuations have been processed in the time-frequency domain.
Technical Paper

Implementation of Fuel Film Compensation Algorithm on the Lamborghini Diablo 6.0 Engine

2001-03-05
2001-01-0609
This paper presents the experimental work and the results obtained from the implementation of a transient fuel compensation algorithm for the 6.0-liter V12 high-performance engine that equips the Lamborghini Diablo vehicles. This activity has been carried out as part of an effort aimed at the optimization of the entire fuel injection control system. In the first part of the paper the tests for fuel film compensator identification are presented and discussed. In this phase the experimental work has been conducted in the test cell. An automatic calibration algorithm was developed to identify the well-known fuel film model X and τ parameters, so as to define their maps as a function of engine speed and intake manifold pressure. The influence of engine coolant temperature has been investigated separately; it will be soon presented together with the air dynamics compensation algorithm. In the second part of the paper, the performance of the fuel dynamics compensation algorithm is analyzed.
Technical Paper

Indicated and Load Torque Estimation using Crankshaft Angular Velocity Measurement

1999-03-01
1999-01-0543
New engine control strategies, designed for drive-by-wire systems, will require the measurement (or the estimation) of several operative engine parameters in order to control emissions and efficiency, while satisfying the driver demand in terms of driveability and performance. Both load and indicated torque (i.e. the torque due to the gas pressure acting on the pistons) will play an essential role in this context, since the driver pedal command may be appropriately interpreted by the Electronic Control Unit (ECU) in terms of an engine (or load) torque request. In fact, the accelerator pedal variation forces the vehicle to reach a final steady-state condition, corresponding to a new level of engine and load torques, thus making it possible to assume the existence of a direct link between the pedal position and the “desired” final engine (or load) torque.
X