Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Improved Full Vehicle Finite Element Tire Road Noise Prediction

2017-06-05
2017-01-1901
This paper presents the application to full vehicle finite element simulation of a steady state rolling tire/wheel/cavity finite element model developed in previous work and validated at the subsystem level. Its originality consists in presenting validation results not only for a wheel on a test bench, but for a full vehicle on the road. The excitation is based on measured road data. Two methods are considered: enforced displacement on the patch centerline and enforced displacement on a 2D patch mesh. Finally the importance of taking the rotation of the tire into account is highlighted. Numerical results and test track measurements are compared in the 20-300 Hz frequency range showing good agreement for wheel hub vibration as well as for acoustic pressure at the occupant’s ears.
Technical Paper

The Truck of the Future: Autonomous and Connected Driving at Daimler Trucks

2017-05-10
2017-01-1931
Due to the continuous increasing highway transport and the decreasing investments into infrastructure a better usage of the installed infrastructure is indispensable. Therefore the operation and interoperation of assistance and telematics systems become more and more necessary. Regarding these facts Highway Pilot was developed at Daimler Trucks. The Highway Pilot System moves the truck highly automated and independent from other road users within the allowed speed range and the required security distance. Daimler Trucks owns diverse permissions in Germany and the USA for testing these technologies on public roads. Next generation is the Highway Pilot Connect System that connects three highly automated driving trucks. The connection is established via Vehicle-to-Vehicle communication (V2V).
Technical Paper

Application and Validation of CAE Methods for Comprehensive Durability Assessment of Leaf Springs with Measurement and Testing

2015-09-29
2015-01-2756
Securing the desired strength and durability characteristics of suspension components is one of the most important topics in the development of commercial vehicles because these components undergo multiaxial variable amplitude loading. Leaf springs are essential for the suspension systems of trucks and they are considered as security relevant components in the product development phase. In order to guide the engineers in the design and testing department, a simulation method is developed as explained by Bakir et al. in a recently published SAE paper [1]. The main aim of the present study is to illustrate the validation of this simulation method for the durability of leaf springs based on the results from testing and measurements. In order to verify this CAE Method, the calculated stresses on the leaf springs are compared with the results of strain gage measurements and the fatigue failures of leaf springs are correlated with the calculated damage values.
Journal Article

Investigation of Tire-Road Noise with Respect to Road Induced Wheel Forces and Radiated Airborne Noise

2014-06-30
2014-01-2075
Low interior noise levels in combination with a comfortable sound is an important task for passenger cars. Due to the reduction of many noise sources over the last decades, nowadays tire-road noise has become one of the dominant sources for the interior noise. Especially for manufactures of luxury cars, the reduction of tire-road noise is a big challenge and therefore a central part of NVH development. The knowledge of the noise transmission behavior based on the characteristics of the relevant sources is a fundamental of a modern NVH - development process. For tire-road noise the source characteristics can be described by wheel forces and radiated airborne noise. In combination with the related vehicle transfer functions it is possible to describe the noise transmission behavior in detail. A method for estimating wheel forces and radiated airborne noise is presented.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Journal Article

Fire Fighting of Li-Ion Traction Batteries

2013-04-08
2013-01-0213
The number of full electric and hybrid electric vehicles is rapidly growing [1][2][3]. The new technologies accompanying this trend are increasingly becoming a focal point of interest for rescue services. There is much uncertainty about the right techniques to free trapped occupants after an accident. The same applies to vehicle fires. Can car fires involving vehicles with a lithium ion traction battery be handled in the same way as conventional vehicle fires? Is water the right extinguishing agent? Is there a risk of explosion? There are many unanswered questions surrounding the topic of electric vehicle safety. The lack of information is a breeding ground for rumours, misinformation and superficial knowledge. Discussions on various internet platforms further this trend. Tests were conducted on three lithium ion traction batteries, which were fuel-fired until burning on their own. The batteries were then extinguished with water, a surfactant and a gelling agent.
Journal Article

Cold Start Effect Phenomena over Zeolite SCR Catalysts for Exhaust Gas Aftertreatment

2013-04-08
2013-01-1064
NH₃/urea SCR is a very effective and widely used technology for the abatement of NOx from diesel exhaust. The SCR mechanism is well understood and the catalyst behavior can be predicted by mathematical models - as long as operation above the temperature limit for AdBlue® injection is considered. The behavior below this level is less understood. During the first seconds up to minutes after cold start, complete NOx abatement can be observed over an SCR catalyst in test bench experiments, together with a significant increase in temperature after the converter (ca. 100 K). In this work these effects have been investigated over a monolith Cu-zeolite SCR catalyst. Concentration step experiments varying NO, NO₂ and H₂O have been carried out in lab scale, starting from room temperature. Further, the interaction of C₃H₆ and CO with NOx over the SCR has been investigated.
Technical Paper

Development of Energy Management Strategies and Analysis with Standard Drive Cycles for Fuel Cell Electric Vehicles

2012-09-10
2012-01-1609
In order to reduce fuel consumption in Fuel Cell Electric Vehicles, effective distribution of power demand between Fuel Cell and Battery is required. Energy management strategies can improve fuel economy by meeting power demand efficiently. This paper explains development of various energy management strategies for Fuel Cell Electric Vehicle with Lithium Ion Battery. Drive cycles used for optimization and analysis of the strategies are New European Drive cycles (NEDC), Japanese Drive cycles (JAP1015), City Drive cycles, Highway Drive cycles (FHDS) and Federal Urban Drive cycles (FUDS). All Fuel consumption and ageing calculations are done using backward model implemented in MATLAB/SIMULINK.
Technical Paper

Standardization of Wiring Harness Data Formats between Truck OEMs and Suppliers

2011-09-13
2011-01-2270
The continuously integration of electrics and electronics (EE) in the last decades is one of the main key drivers for innovation and business success of the Automotive OEMs. This is also applicable for truck manufacturers. On the other side factors like the rising vehicle complexity, number of variants and the warranty costs for EE issues are increasing the pressure on the engineering teams responsible for the mechatronic systems. To address these issues one of the key activities in the European market (focus on Germany) during the last decade was to introduce industry-wide standards for the data transfer of wiring harness data between OEM and harness supplier. In this paper the benefits and technical background of using the standards KBL and KOMP formats within the MB-Trucks brand will be presented. Moreover the role of the Information Technology (IT) will be explained in detail.
Technical Paper

Numerical Simulation of the Flow through an Alternator inside an Engine Compartment of a Passenger Car

2009-10-01
2009-01-3068
In this study the numerical simulation of the flow through an alternator inside an engine compartment of a passenger car is investigated. Specifically the interaction of the flow through the alternator with the flow through the engine compartment is explored in detail. The results are compared with a corresponding numerical simulation of an alternator in a surrounding of a test facility and with a numerical simulation of the flow through an engine compartment without taking into account the internal flow through the alternator. Finally the air temperature near the alternator and also the temperature of some components inside the alternator are compared with experimental values measured during a typical load case used for the thermal protection of the passenger car.
Journal Article

Numerical Simulation of DOC+DPF+SCR systems:DOC Influence on SCR Performance

2008-04-14
2008-01-0867
A numerical model for a diesel oxidation catalyst (DOC) is presented. It is based on a spatially 1D, physical and chemically based modeling of the relevant processes within the catalytic monolith. A global reaction kinetic approach has been chosen to describe the chemical reactions. Water condensation and evaporation was also considered, in order to predict the cold start behavior. Reaction kinetic parameters have been evaluated from a series of laboratory experiments. A correlation between the kinetic parameters and the noble metal loading was developed. The model was used in combination with a SCR-Model to study the influence of changes of noble metal loading and DOC volume on the overall transient NOx performance of a DOC+DPF+SCR system.
X