Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Gaussian Process Surrogate Models for Vibroacoustic Simulations

2024-06-12
2024-01-2930
In vehicle NVH development, vibroacoustic simulations with Finite Element (FE) models are a common technique. The computational costs for these calculations are steadily rising due to more detailed modelling and higher frequency ranges. At the same time, the need for multiple evaluations of the same model with different input parameters, e.g., for uncertainty quantification, optimization, or robustness investigations, is also increasing. Therefore, it is crucial to reduce the computational costs in these cases. A common technique is to use surrogate models that replace the computationally intensive FE model to perform repeated evaluations. Several different methods in this area are well established, but with the continuous advancements in the field of machine learning, interesting new methods like the Gaussian Process (GP) regression arises as a promising approach.
Technical Paper

Study the Effect of Pneumatic Valve Characteristics due to Linear and Non-Linear Damping System

2023-11-10
2023-28-0160
Pneumatic valves are widely used in heavy commercial vehicles’ air braking systems. These valves are mainly used in the braking system layout to maintain the vehicle stability during dynamic conditions. Rubber components are inevitable in valves as a sealing element, and it is very difficult to predict the behavior due to its nonlinear nature. Basically, this valve efficiency is defined in terms of performance and response characteristics. These characteristics are determined in the concept stage itself using 1D simulation software. AMESim software has a variety of elements to use in a unique way for performance and response behavior prediction. For pneumatic valves, 1D analysis is an effective method and it gives good correlation with actual test results. During the modelling of pneumatic valves, some of the contacts between rubber and metals are controlled by various parameters such as damping, contact stiffness and desired phase angle.
Technical Paper

Shim Bond Coverage Analysis Using Artificial Intelligence

2023-11-05
2023-01-1882
Shim bond coverage analysis is a common practice in brake and pad manufacturing during brake pad development. This analysis is used to assess the quality of a shim bond and quantify it in case of any quality or de-bond issues during production and warranty returns. Currently, the analysis is carried out manually in the industry using a 1:1 template printed on tracing paper, which is placed on the deboned shim to identify bad bonded regions. The bond coverage is then calculated manually based on the data obtained from the template, which is a time-consuming process taking around 15 minutes per pad/shim analysis. To minimize manual work and increase accuracy, artificial intelligence is being used to estimate the shim bonding quality and coverage. The idea is to feed the deboned shim and pad picture to the model and predict the following: Whether the bond coverage is good or bad. Identify the good/bad and unnecessary regions on the shim/pad for bond coverage analysis.
Technical Paper

Framework for Expressing Non-functional Requirements in System Engineering

2022-10-05
2022-28-0070
System requirements are classified as FRs (Functional Requirements) and NFRs (Non-Functional Requirements) [1]. FRs focus on system goals. NFRs put constraints on the system. NFRs are often expressed in the form of properties that a system must fulfill in the process of realization of FRs. NFRs are usually categorized under headers such as performance, reliability, quality, security, maintainability without any mechanism to associate with the corresponding FRs in system architecture. This leads to challenges in further decomposition of requirements at subsystem levels. The paper proposes an approach for MBSE where NFRs can be identified and represented in a layered system architecture design. The proposed approach bifurcates NFRs to derive functions using SysML (extension to UML) to provide a functional or structural solution. The derived functions from NFRs are then either linked with an existing function or a new function is created in architecture design.
Technical Paper

A Study on Feasibility of Carbon Credit System for Road Vehicles

2022-10-05
2022-28-0011
As we move towards greener technologies in the transportation sector, it becomes mandatory to monitor its impact or the utilization of such a technology in the intended manner. Improper usage results in lesser utilization of benefits of such green technologies. One such scenario is the range anxiety; users of parallel hybrid vehicles face a dilemma between charging and refueling the vehicle. If the hybrid vehicle is operated in a gas-powered mode most of the time, the emission levels would be comparable to those of gas-powered vehicles. On the other hand, gas-powered vehicles have no mechanism to completely cut CO2 emissions, unlike hybrids (electric drive). Emission regulatory bodies are facing difficulties in regulating each road vehicle. Therefore, the actual emission levels emitted from the vehicles are higher than the estimate provided by regulations. This paper discusses the possibility of implementing a Carbon Credit Scoring for each class of vehicles.
Journal Article

Better Understanding Factors of Impact on Brake System Corner Performance

2022-09-19
2022-01-1184
The automotive industry continues to focus heavily on new electrified mobility strategies. Whether this electrified mobility consists of battery electric vehicles or electrified brake boost systems, there is a level of system sensitivity which presents new challenges throughout the industry during development of a new product. Most specifically in brake system development, much of the critical performance targets that have come along with electrification are cascaded down to the vehicle corner and its component performance. These corner level requirements have transformed to be more stringent in order to improve the overall system efficiency. It is important that the factors which lead to less than desirable performance are identified and understood. Some of the factors that influence the brake system corner performance are driven by multiple components, and this paper will go into identifying & explaining the following.
Technical Paper

A Modular Methodology for Complete Vehicle Thermal Management Simulations

2022-08-30
2022-01-5064
Vehicle thermal management (VTM) simulations are becoming increasingly important in the development phase of a vehicle. These simulations help in predicting the thermal profiles of critical components over a drive cycle. They are usually done using two methodologies: (1) Solving every aspect of the heat transfer, i.e., convection, radiation, and conduction, in a single solver (Conjugate Heat Transfer) or (2) Simulating convection using a fluid solver and computing the other two mechanisms using a separate thermal solver (Co-simulation). The first method is usually computationally intensive, while the second one isn’t. This is because Co-simulation reduces the load of simulating all heat transfer mechanisms in a single code. This is one of the reasons why the Co-simulation method is widely used in the automotive industry. Traditionally, the methods developed for Co-simulation processes are load case specific.
Technical Paper

On the Different Contributions of Flexible Elements to the Structural Noise of Refrigeration Compressors

2022-06-15
2022-01-0983
Air conditioning acoustics have become of paramount importance in electric vehicles, where noise from electromechanical components is no longer masked by the presence of the internal combustion engine. In a car HVAC systems, the coolant compressor is one of the most important sources in terms of vibration and noise generation. The paper, the generated structural noise is studied in detail on a prototype installation, and the noise transmission and propagation mechanisms are analyzed and discussed. Through ”in situ” measurements and virtual point transformation, the rotor unbalance forces and torque acting within the component are identified. The dynamic properties of the rubber mounts, installed between the compressor and its support, are identified thanks to matrix inversion methods. To assess the quality of the proposed procedure, the synthesized sound pressure level is compared with experimental SPL measurements in different operational conditions.
Journal Article

Assessing Low Frequency Flow Noise Based on an Experimentally Validated Modal Substructuring Strategy Featuring Non-Conforming Grids

2022-06-15
2022-01-0939
The continuous encouragement of lightweight design in modern vehicles demands a reliable and efficient method to predict and ameliorate the interior acoustic comfort for passengers. Due to considerable psychological effects on stress and concentration, the low frequency contribution plays a vital rule regarding interior noise perception. Apart other contributors, low frequency noise can be induced by transient aerodynamic excitation and the related structural vibrations. Assessing this disturbance requires the reliable simulation of the complex multi-physical mechanisms involved, such as transient aerodynamics, structural dynamics and acoustics. The domain of structural dynamics is particularly sensitive regarding the modelling of attachments restraining the vibrational behaviour of incorporated membrane-like structures. In a later development stage, when prototypes are available, it is therefore desirable to replace or update purely numerical models with experimental data.
Journal Article

Analysis of the Piston Group Friction in a Single-Cylinder Gasoline Engine When Operated with Synthetic Fuel DMC/MeFo

2022-03-29
2022-01-0485
Synthetic fuels for internal combustion engines offer CO2-neutral mobility if produced in a closed carbon cycle using renewable energies. C1-based synthetic fuels can offer high knock resistance as well as soot free combustion due to their molecular structure containing oxygen and no direct C-C bonds. Such fuels as, for example, dimethyl carbonate (DMC) and methyl formate (MeFo) have great potential to replace gasoline in spark-ignition (SI) engines. In this study, a mixture of 65% DMC and 35% MeFo (C65F35) was used in a single-cylinder research engine to determine friction losses in the piston group using the floating-liner method. The results were benchmarked against gasoline (G100). Compared to gasoline, the density of C65F35 is almost 40% higher, but its mass-based lower heating value (LHV) is 2.8 times lower. Hence, more fuel must be injected to reach the same engine load as in a conventional gasoline engine, leading to an increased cooling effect.
Technical Paper

Simulation Driven Design of HVAC Systems under Competing HVAC Noise and Defrost Performance Requirements

2021-08-31
2021-01-1020
It is particularly easy to get tunnel vision as a domain expert, and focus only on the improvements one could provide in their area of expertise. To make matters worse, many Original Equipment Manufacturers (OEMs) are silo-ed by domain of expertise, unconsciously promoting this single mindedness in design. Unfortunately, the successful and profitable development of a vehicle is dependent on the delicate balance of performance across many domains, involving multiple physics and departments. Taking for instance the design of a Heating, Ventilation & Air Conditioning (HVAC) system, the device’s primary function is to control the climate system in vehicle cabins, and more importantly to make sure that critical areas on the windshield can be defrosted in cold weather conditions within regulation time. With the advent of electric and autonomous vehicles, further importance is now also placed on the energy efficiency of the HVAC, and its noise.
Technical Paper

Stage Gates to Integrate Manufacturing to the Product Development Process: Case Study in Automotive Company

2021-03-26
2020-36-0052
The objective of this paper is to analyze the application of the stage-gates method (phase review) as a mechanism for integration and management between the product development process (PDP) and manufacturing, which is the first customer of the development teams. Using the stage-gates method, it is possible to ensure that manufacturing constraints and capabilities are incorporated and managed during the PDP. With the results obtained in the case study, it suggests that the stage-gates is a mechanism that, properly systematized, can contribute to greater efficiency of the PDP through the integration of manufacturing in the early stages of development.
Technical Paper

Uncertainty Quantification in Vibroacoustic Analysis of a Vehicle Body Using Generalized Polynomial Chaos Expansion

2020-09-30
2020-01-1572
It is essential to include uncertainties in the simulation process in order to perform reliable vibroacoustic predictions in the early design phase. In this contribution, uncertainties are quantified using the generalized Polynomial Chaos (gPC) expansion in combination with a Finite Element (FE) model of a vehicle body in white. It is the objective to particularly investigate the applicability of the gPC method in the industrial context with a high number of uncertain parameters and computationally expensive models. A non-intrusive gPC expansion of first and second order is implemented and the approximation of a stochastic response process is compared to a Latin Hypercube sampling based reference solution with special regard to accuracy and computational efficiency. Furthermore, the method is examined for other input distributions and transferred to another FE model in order to verify the applicability of the gPC method in practical applications.
Technical Paper

Challenges in Vibroacoustic Vehicle Body Simulation Including Uncertainties

2020-09-30
2020-01-1571
During the last decades, big steps have been taken towards a realistic simulation of NVH (Noise Vibration Harshness) behavior of vehicles using the Finite Element (FE) method. The quality of these computation models has been substantially increased and the accessible frequency range has been widened. Nevertheless, to perform a reliable prediction of the vehicle vibroacoustic behavior, the consideration of uncertainties is crucial. With this approach there are many challenges on the way to valid and useful simulation models and they can be divided into three areas: the input uncertainties, the propagation of uncertainties through the FE model and finally the statistical output quantities. Each of them must be investigated to choose sufficient methods for a valid and fast prediction of vehicle body vibroacoustics. It can be shown by rough estimation that dimensionality of the corresponding random space for different types of uncertainty is tremendously high.
Technical Paper

The Particle Number Counter as a “Black Box” - A Novel Approach to a Universal Particle Number Calibration Standard for Automotive Exhaust

2020-09-15
2020-01-2195
The reduction of vehicle exhaust particle emissions is a success story of European legislation. Various particle number (PN) counters and calibration procedures serve as tools to enforce PN emission limits during vehicle type approval (VTA) or periodical technical inspection (PTI) of in-use vehicles. Although all devices and procedures apply to the same PN-metric, they were developed for different purposes, by different stakeholder groups and for different target costs and technical scopes. Furthermore, their calibration procedures were independently defined by different stakeholder communities. This frequently leads to comparability and interpretation issues. Systematic differences of stationary and mobile PN counters (PN-PEMS) are well-documented. New, low-cost PTI PN counters will aggravate this problem. Today, tools to directly compare different instruments are scarce.
Journal Article

Investigations on the Spray-Atomization of Various Fuels for an Outwardly Opening Piezo Injector for the Application to a Pilot Injection Passenger Car Gas Engine

2020-09-15
2020-01-2117
Pilot injection gas engines are commonly used as large stationary engines. Often, the combustion is implemented as a dual-fuel strategy, which allows both mixed and diesel-only operation, based on a diesel engine architecture. The current research project focuses on the application of pilot injection in an engine based on gasoline components of the passenger car segment, which are more cost-effective than diesel components. The investigated strategy does not aim for a diesel-only combustion, hence only small liquid quantities are used for the main purpose of providing a strong, reliable ignition source for the natural gas charge. This approach is mainly driven to provide a reliable alternative to the high spark ignition energies required for high cylinder charge densities. When using such small liquid quantities, a standard common-rail diesel nozzle will apparently not be ideal regarding some general specifications.
Technical Paper

Model-Based Calibration of an Automotive Climate Control System

2020-04-14
2020-01-1253
This paper describes a novel approach for modeling an automotive HVAC unit. The model consists of black-box models trained with experimental data from a self-developed measurement setup. It is capable of predicting the temperature and mass flow of the air entering the vehicle cabin at the various air vents. A combination of temperature and velocity sensors is the basis of the measurement setup. A measurement fault analysis is conducted to validate the accuracy of the measurement system. As the data collection is done under fluctuating ambient conditions, a review of the impact of various ambient conditions on the HVAC unit is performed. Correction models that account for the different ambient conditions incorporate these results. Numerous types of black-box models are compared to identify the best-suited type for this approach. Moreover, the accuracy of the model is validated using test drive data.
Technical Paper

High Performance Processor Architecture for Automotive Large Scaled Integrated Systems within the European Processor Initiative Research Project

2019-04-02
2019-01-0118
Autonomous driving systems and connected mobility are the next big developments for the car manufacturers and their suppliers during the next decade. To achieve the high computing power needs and fulfill new upcoming requirements due to functional safety and security, heterogeneous processor architectures with a mixture of different core architectures and hardware accelerators are necessary. To tackle this new type of hardware complexity and nevertheless stay within monetary constraints, high performance computers, inspired by state of the art data center hardware, could be adapted in order to fulfill automotive quality requirements. The European Processor Initiative (EPI) research project tries to come along with that challenge for next generation semiconductors. To be as close as possible to series development needs for the next upcoming car generations, we present a hybrid semiconductor system-on-chip architecture for automotive.
Journal Article

A Method for Identifying Most Significant Vehicle Parameters for Controller Performance of Autonomous Driving Functions

2019-04-02
2019-01-0446
In this paper a method for the identification of most significant vehicle parameters influencing the behavior of a lateral control system of autonomous car is presented. Requirements for the design stage of the controller need to consider many uncertainties in the plant. While most vehicle properties can be compensated by an appropriate tuning of the control parameters, other vehicle properties can change significantly during usage. The control system is evaluated based on performance measures. Analyzed parameters comprise functional tire characteristics, mass of the vehicle and position of its center of gravity. Since the parameters are correlated, but Sobol’ sensitivity analysis assumes decorrelated inputs, random variation yields no reasonable results. Furthermore, the variation of each parameter or set of parameters is not applicable since the numbers of required simulations is increased significantly according to input dimension.
Technical Paper

A New Approach to Model the Fan in Vehicle Thermal Management Simulations

2019-02-25
2019-01-5016
Vehicle thermal management (VTM) simulations constitute an important step in the early development phase of a vehicle. They help in predicting the temperature profiles of critical components over a drive cycle and identify components which are exceeding temperature design limits. Parts with the highest temperatures in a vehicle with an internal combustion engine are concentrated in the engine bay area. As packaging constraints grow tighter, the components in the engine bay are packed closer together. This makes the thermal protection in the engine bay even more crucial. The fan influences the airflow into the engine bay and plays an important role in deciding flow distribution in this region. This makes modelling of the fan an important aspect of VTM simulations. The challenge associated with modelling the fan is the accurate simulation of the rotation imparted by the fan to the incoming flow. Currently, two modelling approaches are prevalent in the industry.
X