Refine Your Search

Topic

Author

Search Results

Technical Paper

Robust Optimization for Real World CO2 Reduction

2018-05-30
2018-37-0015
Ground transportation industry contributes to about 14% of the global CO2 emissions. Therefore, any effort in reducing global CO2 needs to include the design of cleaner and more energy efficient vehicles. Their design needs to be optimized for the real-world conditions. Using wind tunnels that can only reproduce idealized conditions quite often does not translate into real-world on-road CO2 reduction and improved energy efficiency. Several recent studies found that very rarely can the real-world environment be represented by turbulence-free conditions simulated in wind tunnels. The real-world conditions consist of both transversal flow velocity component (causing an oncoming yaw flow) as well as large-scale turbulent fluctuations, with length scales of up to many times the size of a vehicle. The study presented in this paper shows how the realistic wind affects the aerodynamics of the vehicle.
Technical Paper

Update on A-Pillar Overflow Simulation

2018-04-03
2018-01-0717
The management of surface water flows driven from the wind screen by the action of wipers and aerodynamic shear is a growing challenge for automotive manufacturers. Pressure to remove traditional vehicle features, such as A-Pillar steps for aesthetic, aeroacoustic and aerodynamic reasons increases the likelihood that surface water may be convected over the A-Pillar and onto the front side glass where it can compromise drivers’ vision. The ability to predict where and under which conditions the A-Pillar will be breached is important for making correct design decisions. The use of numerical simulation in this context is desirable, as experimental testing relies on the use of aerodynamics test properties which will not be fully representative, or late-stage prototypes, making it difficult and costly to correct issues. This paper provides an update on the ability of simulation to predict A-Pillar overflow, comparing physical and numerical results for a test vehicle.
Technical Paper

Evaluation and Improvement of Greenhouse Wind Noise of a SGMW SUV using Simulation Driven Design

2018-04-03
2018-01-0737
At SAIC-GM-Wuling (SGMW) the greenhouse wind noise performance of their vehicles has gained a lot of attention in the development process. In order to evaluate and improve the noise quality of a newly developed SUV a digital simulation based process has been employed during the early stage of the design. CFD simulation was used for obtaining the flow induced exterior noise sources. Performance metrics for the quality were based on interior noise levels which were calculated from the exterior sources using a SEA approach for the noise transmission through the glass panels and propagation to the driver’s or passenger’s head space. Detailed analysis of the CFD results allowed to identify noise sources and related flow structures. Based on this analysis, design modifications were then applied and tested in a sequential iterative process. As a result an improvement of more than 2 dB in overall sound pressure level could be achieved.
Technical Paper

Digital Aeroacoustics Design Method of Climate Systems for Improved Cabin Comfort

2017-06-05
2017-01-1787
Over the past decades, interior noise from wind noise or engine noise have been significantly reduced by leveraging improvements of both the overall vehicle design and of sound package. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are becoming more relevant for perceived quality and passenger comfort. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside and around HVAC systems. This methodology is based on the post-processing of unsteady flow results obtained using Lattice Boltzmann based Method (LBM) Computational Fluid Dynamics (CFD) simulations combined with LBM-simulated Acoustic Transfer Functions (ATF) between the position of the sources inside the system and the passenger’s ears.
Journal Article

Accurate Fuel Economy Prediction via a Realistic Wind Averaged Drag Coefficient

2017-03-28
2017-01-1535
The ultimate goal for vehicle aerodynamicists is to develop vehicles that perform well on the road under real-world conditions. One of the most important metrics to evaluate vehicle performance is the drag coefficient. However, vehicle development today is performed mostly under controlled settings using wind tunnels and computational fluid dynamics (CFD) with artificially uniform upstream conditions, neglecting real-world effects due to road turbulence from wind and other vehicles. Thus, the drag coefficients computed with these methods might not be representative of the real performance of the car on the road. This might ultimately lead engineers to develop design solutions and aerodynamic devices which, while performing well in idealized conditions, do not perform well on the road. For this reason, it is important to assess the vehicle’s drag as seen in real-world environments. An effort in this direction is represented by using the wind-averaged drag.
Journal Article

Validation of Aerodynamic Simulation and Wind Tunnel Test of the New Buick Excelle GT

2017-03-28
2017-01-1512
The validation of vehicle aerodynamic simulation results to wind tunnel test results and simulation accuracy improvement attract considerable attention of many automotive manufacturers. In order to improve the simulation accuracy, a simulation model of the ground effects simulation system of the aerodynamic wind tunnel of the Shanghai Automotive Wind Tunnel Center was built. The model includes the scoop, the distributed suction, the tangential blowing, the moving belt and the wheel belts. The simulated boundary layer profile and the pressure distribution agree well with test results. The baseline model and multiple design changes of the new Buick Excelle GT are simulated. The simulation results agree very well with test results.
Technical Paper

Thermal Design Evaluation of Construction Vehicles using a Simulation Based Methodology

2015-09-29
2015-01-2888
Design and evaluation of construction equipments and vehicles in the construction industry constitute a very important but expensive and time consuming part of the engineering process on account of large number of variants of prototypes and low production volumes associated with each variant. In this article, we investigate an alternative approach to the hardware testing based design process by implementing a Computational Fluid Dynamics (CFD) simulation based methodology that has the potential to reduce the cost and time of the entire design process. The simulation results were compared with test data and good agreement was observed between test data and simulation.
Journal Article

Aerodynamic Optimization of Trailer Add-On Devices Fully- and Partially-Skirted Trailer Configurations

2015-09-29
2015-01-2885
As part of the United States Department of Energy's SuperTruck program, Volvo Trucks and its partners were tasked with demonstrating 50% improvement in overall freight efficiency for a tractor-trailer, relative to a best in class 2009 model year truck. This necessitated that significant gains be made in reducing aerodynamic drag of the tractor-trailer system, so trailer side-skirts and a trailer boat-tail were employed. A Lattice-Boltzmann based simulation method was used in conjunction with a Kriging Response Surface optimization process in order to efficiently describe a design space of seven independent parameters relating to boat-tail and side-skirt dimensions, and to find an optimal configuration. Part 1 concerns a fully-skirted tractor-trailer system, and consists of an initial phase of optimization, followed by a mid-project re-evaluation of constraints, and an additional period of optimization.
Technical Paper

The Lattice-Boltzmann Method: An Alternative to LES for Complex Aerodynamic and Aeroacoustic Simulations in the Aerospace Industry

2015-09-15
2015-01-2575
An overview of the theory and applications of the Lattice-Boltzmann Method (LBM) is presented in this paper. LBM has gained a reputation over the past decade as a viable alternative to traditional Reynolds-averaged Navier-Stokes (RANS) based methods for the solution of computational fluid dynamics (CFD) applications in the aerospace and automotive industries. The theoretical background of the method is presented and the key differentiators to traditional RANS methods are summarized. We then look at current and potential future applications of CFD in the aerospace industry and identify a number of areas where the limitations of RANS tools, in particular with regard to unsteady flows and the handling of complex geometries, prevent a deeper penetration of CFD into product development processes in the aerospace industry.
Journal Article

From Exterior Wind Noise Loads to Interior Cabin Noise: A Validation Study of a Generic Automotive Vehicle

2015-06-15
2015-01-2328
The object of the validation study presented in this paper is a generic vehicle, the so-called SAE body, developed by a consortium of German car manufacturers (Audi, Daimler, Porsche, Volkswagen). Many experiments have been performed by the abovementioned consortium on this object in the past to investigate its behavior when exposed to fluid flow. Some of these experiments were used to validate the simulation results discussed in the present paper. It is demonstrated that the simulation of the exterior flow is able to represent the transient hydrodynamic structures and at the same time both the generation of the acoustic sources and the propagation of the acoustic waves. Performing wave number filtering allows to identify the acoustic phenomena and separate them from the hydrodynamic effects. In a next step, the noise transferred to the interior of the cabin through the glass panel was calculated, using a Statistical Energy Analysis approach.
Journal Article

A Computational Approach to Assess Buffeting and Broadband Noise Generated by a Vehicle Sunroof

2015-04-14
2015-01-1532
Car manufacturers put large efforts into reducing wind noise to improve the comfort level of their cars. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof designs are tested to meet low-frequency buffeting (also known as boom) targets and broadband noise targets for the fully open sunroof with deflector and for the sunroof in vent position. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process.
Technical Paper

Application of Real-World Wind Conditions for Assessing Aerodynamic Drag for On-Road Range Prediction

2015-04-14
2015-01-1551
Aerodynamic evaluation of vehicles using static yaw angle changes in wind tunnel testing and numerical simulation has been used as standard practice for evaluating vehicle performance under a range of wind conditions. However, this approach does not consider dynamic wind effects coming from changing wind conditions, passing other vehicles and roadside obstacles, and transient non-uniform wind conditions coming from environmental turbulence. In previous work by the authors, computational fluid dynamics (CFD) simulation methodology for considering dynamic wind conditions and on-road turbulence was demonstrated, showing the important effects of the wind conditions on the vehicle aerodynamics. The technique allows the vehicle to be tested under a range of transient gust conditions, also accounting for wind turbulence coming from upstream vehicles and natural environmental wind fluctuations.
Journal Article

Modelling A-Pillar Water Overflow: Developing CFD and Experimental Methods

2012-04-16
2012-01-0588
Water accumulating on a vehicle's wind screen, driven over the A-pillar by a combination of aerodynamic forces and the action of the windscreen wipers, can be a significant impediment to driver vision. Surface water film, or streams, persisting in key vision areas of the side glass can impair the drivers' ability to see clearly through to the door mirror, and laterally onto junctions. Common countermeasures include: water management channels and hydrophobic glass coatings. Water management channels have both design and wind noise implications. Hydrophobic coatings entail significant cost. In order to manage this design optimisation issue a water film and wiper effect model has been developed in collaboration with Jaguar Land Rover, extending the capabilities of the PowerFLOW CFD software. This is complimented by a wind-tunnel based test method for development and validation. The paper presents the progress made to date.
Technical Paper

Aerodynamic Performance Assessment of BMW Validation Models using Computational Fluid Dynamics

2012-04-16
2012-01-0297
Aerodynamic performance assessment of automotive shapes is typically performed in wind tunnels. However, with the rapid progress in computer hardware technology and the maturity and accuracy of Computational Fluid Dynamics (CFD) software packages, evaluation of the production-level automotive shapes using a digital process has become a reality. As the time to market shrinks, automakers are adopting a digital design process for vehicle development. This has elevated the accuracy requirements on the flow simulation software, so that it can be used effectively in the production environment. Evaluation of aerodynamic performance covers prediction of the aerodynamic coefficients such as drag, lift, side force and also lift balance between the front and rear axle. Drag prediction accuracy is important for meeting fuel efficiency targets, prediction of front and rear lifts as well as side force and yawing moment are crucial for high speed handling.
Journal Article

Direct Aeroacoustic Simulation of Flow Impingement Noise in an Exhaust Opening

2011-05-17
2011-01-1517
Unusual noises during vehicle acceleration often reflect poorly on customer perception of product quality and must be removed in the product development process. Flow simulation can be a valuable tool in identifying root causes of exhaust noises created due to tailpipe openings surrounded by fascia structure. This paper describes a case study where an unsteady Computational Fluid Dynamics (CFD) simulation of the combined flow and acoustic radiation from an exhaust opening through fascia components provided valuable insight into the cause of an annoying flow noise. Simulation results from a coupled thermal/acoustic analysis of detailed tailpipe opening geometry were first validated with off-axis microphone spectra under wide open throttle acceleration. After studying the visualizations of unsteady flow velocity and pressure from the CFD, a problem that had proved difficult to solve by traditional “cut and try” methods was corrected rapidly.
Journal Article

Simulation of Rear Glass and Body Side Vehicle Soiling by Road Sprays

2011-04-12
2011-01-0173
Numerical simulation of aerodynamics for vehicle development is used to meet a wide range of performance targets, including aerodynamic drag for fuel efficiency, cooling flow rates, and aerodynamic lift for vehicle handling. The aerodynamic flow field can also be used to compute the advection of small particles such as water droplets, dust, dirt, sand, etc., released into the flow domain, including the effects of mass, gravity, and the forces acting on the particles by the airflow. Previous efforts in this topic have considered the water sprays ejected by rotating wheels when driving on a wet road. The road spray carries dirt particles and can obscure the side and rear glazing. In this study, road sprays are considered in which the effects of additional water droplets resulting from splashing and dripping of particles from the wheel house and rear under body are added to help understand the patterns of dirt film accumulation on the side glass and rear glass.
Journal Article

The Bandwidth of Transient Yaw Effects on Vehicle Aerodynamics

2011-04-12
2011-01-0160
A vehicle on the road encounters an unsteady flow due to turbulence in the natural wind, the unsteady wakes from other vehicles and as a result of traversing through the stationary wakes of road side obstacles. There is increasing concern about potential differences in aerodynamic behaviour measured in steady flow wind tunnel conditions and that which occurs for vehicles on the road. It is possible to introduce turbulence into the wind tunnel environment (e.g. by developing active turbulence generators) but on-road turbulence is wide ranging in terms of both its intensity and frequency and it would be beneficial to better understand what aspects of the turbulence are of greatest importance to the aerodynamic performance of vehicles. There has been significant recent work on the characterisation of turbulent airflow relevant to road vehicles. The simulation of this time-varying airflow is now becoming possible in wind tunnels and in CFD.
Technical Paper

Numerical Simulation of Transient Thermal Convection of a Full Vehicle

2011-04-12
2011-01-0645
Many critical thermal issues that occur in vehicles are uncovered only under more “thermally stressed” driving conditions that are transient in nature such as abruptly changing vehicle speed or turning off fan and engine. Therefore, for flow simulations to be useful in the vehicle design process, it is imperative that these simulations have the ability to accurately model long term transient thermal convection on full vehicles. Presented are simulations for a passenger vehicle driving at 60 kilometers per hour followed by a complete stop. The simulations were performed using a coupling between the flow and thermal solver and in the process, taking into account convection, conduction and radiation effects. Temperature predictions were made both under steady state conditions and during the key-off. Good agreement with the measurements was observed.
Technical Paper

Long Term Transient Cooling of Heavy Vehicle Cabin Compartments

2010-10-05
2010-01-2018
A newly developed simulation methodology for a long term, transient tractor cabin cool-down is presented in this paper. The air flow was simulated using a Lattice-Boltzmann Equation (LBE) based 3-dimensional flow solver. The conduction and radiation effects on the solid parts as well as the average cabin air temperature evolution were solved by the thermal solver, which also includes a human comfort model. The simulation results were compared with the measured experimental test data and good agreement was observed validating the developed simulation approach. The developed methodology can be applied to all other ground vehicles cabin comfort applications.
Journal Article

Numerical Simulations and Measurements of Mirror-Induced Wind Noise

2009-05-19
2009-01-2236
The high cost and competitive nature of automotive product development necessitates the search for less expensive and faster methods of predicting vehicle performance. Continual improvements in High Performance Computing (HPC) and new computational schemes allow for the digital evaluation of vehicle comfort parameters including wind noise. Recently, the commercially available Computational Fluid Dynamics (CFD) code PowerFlow, was evaluated for its accuracy in predicting wind noise generated by an external automotive tow mirror. This was accomplished by running simulations of several mirror configurations, choosing the quietest mirror based on the predicted performance, prototyping it, and finally, confirming the prediction with noise measurements taken in an aeroacoustic wind tunnel. Two testing methods, beam-forming and direct noise measurements, were employed to correlate the physical data with itself before correlating with simulation.
X