Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Exterior Airflow Simulations Using a Lattice Boltzmann Approach

2002-03-04
2002-01-0596
The purpose of this paper is to describe some of the technology behind the Lattice Boltzmann approach to exterior airflow simulations as incorporated into the commercial CFD code, PowerFLOW®. The fundamental approach used is the Lattice Boltzmann Method (LBM) coupled with both a turbulence model to recover the dissipation of sub-grid eddy scales and a wall model to allow reduced resolution in the near-wall region. A description of LBM and both models is given. Comparisons to methods that directly solve the Navier-Stokes equations, such as finite volume or finite element methods (hereafter, collectively referred to as RANS methods) are also presented. A demonstration of the technology is presented by comparing numerical simulations with extensive experimental test data on Ford's standard calibration models. These models were originally described in SAE paper 940323 [1].
Technical Paper

Numerical Simulation and Spectral Analysis of Pressure Fluctuations in Vehicle Aerodynamic Noise Generation

2002-03-04
2002-01-0597
A new approach is proposed and demonstrated for investigation of the spatial structure of fluctuations in unsteady aerodynamics results obtained using CFD. This approach is used in this study to isolate unsteadiness in the flow field due to coherent structures at relatively high frequency from the dominant organized motion, as well as from the computational noise, in unsteady data obtained from CFD simulations. These simulations are performed using the commercial CFD software, PowerFLOW, which employs a Lattice Boltzmann method and a very large-eddy simulation (VLES) model for small-scale turbulence. Spectral analysis is performed on the simulation data to compare with experimental results obtained in a wake plane for a simplified vehicle shape. A new frequency band filtering approach is used to visualize pressure fluctuations in the dominant frequency range responsible for aerodynamic noise.
X