Refine Your Search

Topic

Author

Search Results

Technical Paper

Study of Stick-Slip Friction between Plunging Driveline

2015-06-15
2015-01-2171
Driveline plunge mechanism dynamics has a significant contribution to the driver's perceivable transient NVH error states and to the transmission shift quality. As it accounts for the pitch or roll movements of the front powerplant and rear drive unit, the plunging joints exhibit resisting force in the fore-aft direction under various driveline torque levels. This paper tackles the difficult task of quantifying the coefficient of static friction and the coefficient of dynamic friction in a simple to use metric as it performs in the vehicle. The comparison of the dynamic friction to the static friction allows for the detection of the occurrence of stick-slip in the slip mechanism; which enables for immediate determination of the performance of the design parameters such as spline geometry, mating parts fit and finish, and lubrication. It also provides a simple format to compare a variety of designs available to the automotive design engineer.
Technical Paper

Real-time Determination of Driver's Handling Behavior

2015-04-14
2015-01-0257
This paper proposes an approach to determine driver's driving behavior, style or habit during vehicle handling maneuvers and heavy traction and braking events in real-time. It utilizes intelligence inferred from driver's control inputs, vehicle dynamics states, measured signals, and variables processed inside existing control modules such as those of anti-lock braking, traction control, and electronic stability control systems. The algorithm developed for the proposed approach has been experimentally validated and shows the effectiveness in characterizing driver's handling behavior. Such driver behavior can be used for personalizing vehicle electronic controls, driver assistant and active safety systems, and the other vehicle control features.
Technical Paper

Injury Distributions of Belted Drivers in Various Types of Frontal Impact

2015-04-14
2015-01-1490
Injury distributions of belted drivers in 1998-2013 model-year light passenger cars/trucks in various types of real-world frontal crashes were studied. The basis of the analysis was field data from the National Automotive Sampling System (NASS). The studied variables were injury severity (n=2), occupant body region (n=8), and crash type (n=8). The two levels of injury were moderate-to-fatal (AIS2+) and serious-to-fatal (AIS3+). The eight body regions ranged from head/face to foot/ankle. The eight crash types were based on a previously-published Frontal Impact Taxonomy (FIT). The results of the study provided insights into the field data. For example, for the AIS2+ upper-body-injured drivers, (a) head and chest injury yield similar contributions, and (b) about 60% of all the upper-body injured drivers were from the combination of the Full-Engagement and Offset crashes.
Journal Article

Driver Lane Change Prediction Using Physiological Measures

2015-04-14
2015-01-1403
Side swipe accidents occur primarily when drivers attempt an improper lane change, drift out of lane, or the vehicle loses lateral traction. Past studies of lane change detection have relied on vehicular data, such as steering angle, velocity, and acceleration. In this paper, we use three physiological signals from the driver to detect lane changes before the event actually occurs. These are the electrocardiogram (ECG), galvanic skin response (GSR), and respiration rate (RR) and were determined, in prior studies, to best reflect a driver's response to the driving environment. A novel system is proposed which uses a Granger causality test for feature selection and a neural network for classification. Test results showed that for 30 lane change events and 60 non lane change events in on-the-road driving, a true positive rate of 70% and a false positive rate of 10% was obtained.
Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
Technical Paper

Clustering and Scaling of Naturalistic Forward Collision Warning Events Based on Expert Judgments

2014-04-01
2014-01-0160
The objectives of this study were a) to determine how expert judges categorized valid Integrated Vehicle-Based Safety Systems (IVBSS) Forward Collision Warning (FCW) events from review of naturalistic driving data; and b) to determine how consistent these categorizations were across the judges working in pairs. FCW event data were gathered from 108 drivers who drove instrumented vehicles for 6 weeks each. The data included video of the driver and road scene ahead, beside, and behind the vehicle; audio of the FCW alert onset; and engineering data such as speed and braking applications. Six automotive safety experts examined 197 ‘valid’ (i.e., conditions met design intent) FCW events and categorized each according to a taxonomy of primary contributing factors. Results indicated that of these valid FCW events, between 55% and 73% could be considered ‘nuisance alerts’ by the driver.
Technical Paper

Model Predictive Control of DOC Temperature during DPF Regeneration

2014-04-01
2014-01-1165
This paper presents the application of model predictive control (MPC) to DOC temperature control during DPF regeneration. The model predictive control approach is selected for its advantage - using a model to optimize control moves over horizon while handling constraints. Due to the slow thermal dynamics of the DOC and DPF, computational bandwidth is not an issue, allowing for more complex calculations in each control loop. The control problem is formulated such that all the engine control actions, other than far post injection, are performed by the existing production engine controller, whereas far post injection is selected as the MPC manipulated variable and DOC outlet temperature as the controlled variable. The Honeywell OnRAMP Design Suite (model predictive control software) is used for model identification, control design and calibration.
Technical Paper

Design of a Fuzzy Based AFS (Advanced Front Lightning System) to Improve Night-Time Driving for Truck Drivers: Foreseeing its Use in Emerging Markets

2014-04-01
2014-01-0435
Nighttime driving behavior differs from that during the day because of unique scenarios presented in a driver's field of vision. At night drivers have to rely on their vehicle headlamps to illuminate the road to be able to see the environment and road conditions in front of him. In recent decades car illumination systems have undergone considerable technological advances such as the use of a Light Emitting Diode (LED) in Adaptive Front-lighting Systems (AFS), a breakthrough in lighting technology. This is rapidly becoming one of the most important innovative technologies around the world within the lighting community. This paper discusses driver's needs given the environment and road conditions using a survey applied to compare the needs of both truck and car drivers under different road conditions. The results show the potential and suitability of the methodology proposed for controlling truck-related lighting in any emergent market.
Technical Paper

Investigation of Climate Control Power Consumption in DTE Estimation for Electric Vehicles

2014-04-01
2014-01-0713
Distance to empty (DTE) estimation is an important factor to electric vehicle (EV) applications due to its limited driving range. The DTE calculation is based on available energy of the battery and power usage by the powertrain components (e.g. electric motor) and climate control components (e.g. PTC heater and electric AC compressor). The conventional way of estimating the DTE is to treat the power consumed by the climate control system the same as the power by the powertrain for either instantaneous or rolling average estimation. The analysis in this study shows that the power consumption by the climate control system should be estimated based on the current ambient conditions and driver's input instead of using the recorded data from the past driving cycles. The climate control should also be considered separately from the powertrain in power usage rolling average calculation, which results in improvements in DTE estimation especially for extreme hot and cold conditions.
Journal Article

In-Vehicle Driver State Detection Using TIP-II

2014-04-01
2014-01-0444
A transportable instrumentation package to collect driver, vehicle and environmental data is described. This system is an improvement on an earlier system and is called TIP-II [13]. Two new modules were designed and added to the original system: a new and improved physiological signal module (PH-M) replaced the original physiological signals module in TIP, and a new hand pressure on steering wheel module (HP-M) was added. This paper reports on exploratory tests with TIP-II. Driving data were collected from ten driver participants. Correlations between On-Board-Diagnostics (OBD), video data, physiological data and specific driver behavior such as lane departure and car following were investigated. Initial analysis suggested that hand pressure, skin conductance level, and respiration rate were key indicators of lane departure lateral displacement and velocity, immediately preceding lane departure; heart rate and inter-beat interval were affected during lane changes.
Journal Article

High-Frequency Time Domain Source Path Contribution: From Engine Test Bench Data to Cabin Interior Sounds

2013-05-13
2013-01-1957
This work presents an application of airborne source path contribution analysis with emphasis on prediction of wideband sounds inside a cabin from measurements made around a stand-alone engine. The heart of the method is a time domain source path receiver technique wherein the engine surface is modeled as a number of source points. Nearfield microphone measurements and transfer functions are used to quantify the source strengths at these points. This acoustic engine model is then used in combination with source-to-receiver transfer functions to calculate sound levels at other positions, such as at the driver's ear position. When combining all the data, the in-cabin engine sound can be synthesized even before the engine is physically installed into the vehicle. The method has been validated using a powertrain structure artificially excited by several shakers playing band-limited noise so as to produce a complicated vibration pattern on the surface.
Journal Article

Considerations in HMI Design of a Reverse Braking Assist (RBA) System

2013-04-08
2013-01-0720
The Reverse Braking Assist (RBA) feature is designed to automatically activate full braking in a backing vehicle. When this feature activates, a backing vehicle is suddenly stopped or may slide to a stop. During this process, an understanding of the driver's behavior may be useful in the design of an appropriate human-machine-interface (HMI) for the RBA. Several experimental studies were done to examine driver behavior in response to an unexpected and automatic braking event while backing [1]. Two of these studies are reported in this paper. A 7-passenger Crossover Utility Vehicle was fitted with a rear-view camera, a center-stack mounted LCD screen, and ancillary recording devices. In the first study, an object was suddenly placed in the path of a backing vehicle. The backing vehicle came to a sudden and complete stop. The visual image of the backing path on the LCD prominently showed that an obstacle was present in the backing path of the vehicle.
Technical Paper

Modal Parameter Estimation on Automotive Development

2012-11-25
2012-36-0641
Modal parameter identification is used to identify those parameters of the model which describe the dynamic properties of a vibration system. Structural dynamic methods and technologies have been used with great success by the automotive industry. Experimental Modal Analysis is the process of determining the modal parameters (modes, natural frequencies, damping factors) of a linear, time-invariant system. One common reason for experimental modal analysis is the verification or correction of the results of the analytical approach. Another reason to extract the modal parameters experimentally is due to its use for future evaluations such as structural modifications. This paper presents the Experimental Modal Analysis of a car in trimmed body configuration which represents a complex system due to the systems attached to it, increasing its damping and measuring noise. Both frequency and time domain system identification methods are studied to obtain the main modes of the structure.
Journal Article

Centralized Torque Controller for a Nonminimum Phase Phenomenon in a Powersplit HEV

2012-04-16
2012-01-1026
Torque controls for the engine and electric motors in a Powersplit HEV are keys to the success of balancing fuel economy, driveability, and battery power control. The electric variable transmission (EVT) offers an opportunity to let the engine operate at system-optimal fuel efficient points independently of any load. Existing work shows such a benefit can be realized through a decentralized control structure that translates the driver inputs to independent engine torque and speed control. However, our study shows that the decentralized control structures have a fundamental limitation that arises from the nonminimum phase (NMP) zero in the transfer function from the driver power command to the generator torque change rate, and thus not only is it difficult to obtain smooth generator torque but also it can cause violations on battery power limits during transients. Additionally, it adversely affects the driveability due to the generator torque transients reflected at the ring gear.
Technical Paper

Challenges to Develop a Global Beam Pattern for ECE Markets Around the World

2011-10-04
2011-36-0138
The vehicular illumination system has undergone considerable technological advances in recent decades such as the use of a Light Emitting Diode (LED) and HID (high intensity discharge) lamps. However, the challenges to develop a global beam pattern for ECE markets have been quite difficult due to different needs in different regions. Global programs have to deal with the differences among costumer needs and desires. This paper shows the challenges to understand the different needs and highlights the opportunities for the future to improve road illumination and the driver's safety adopting simulations and different road scenarios.
Journal Article

Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors

2011-04-12
2011-01-0981
This paper proposes an approach to use ABS wheel speed sensor signals together with other vehicle state information from a brake control module to detect an unbalanced tire or tires in real-time. The proposed approach consists of two-stage algorithms that mix a qualitative method using band-pass filtering with a quantitative parameter identification using conditional least squares. This two-stage approach can improve the robustness of tire imbalance or imbalances. The proposed approach is verified through vehicle testing and the test results show the effectiveness of the approach.
Journal Article

Occupant Preferred Back Angle Relative to Head Restraint Regulations

2010-04-12
2010-01-0779
Having, by now, introduced several new vehicles that comply with FMVSS 202a, manufacturers are reporting an increased number of complaints from consumers who find that the head restraint is too close; negatively affecting their posture. It is speculated that one of the reasons that head restraints meeting the new requirement are problematic is that the FMVSS backset measurement is performed at a back angle that is more reclined than the back angle most drivers choose and the back angle at which the seat / vehicle was designed. The objective of this paper is to confirm this hypothesis and elaborate on implications for regulatory compliance in FMVSS 202a.
Technical Paper

A Theoretical Math Model for Projecting Ais3+ Thoracic Injury for Belted Occupants in Frontal Impacts

2004-11-01
2004-22-0020
A theoretical math model was created to assess the net effect of aging populations versus evolving system designs from the standpoint of thoracic injury potential. The model was used to project the next twenty-five years of thoracic injuries in Canada. The choice of Canada was topical because rulemaking for CMVSS 208 has been proposed recently. The study was limited to properly-belted, front-outboard, adult occupants in 11-1 o'clock frontal crashes. Moreover, only AIS3+thoracic injury potential was considered. The research consisted of four steps. First, sub-models were developed and integrated. The sub-models were made for numerous real-world effects including population growth, crash involvement, fleet penetration of various systems (via system introduction, vehicle production, and vehicle attrition), and attendant injury risk estimation. Second, existing NASS data were used to estimate the number of AIS3+ chest-injured drivers in Canada in 2001.
Technical Paper

Adaptive Fuzzy Neural Networks With Global Clustering

2004-03-08
2004-01-0294
This paper proposes a novel algorithm. This algorithm is called Self-Organizing Fuzzy Neural Network (SOFNN). SOFNN revolutionizes how researchers apply control theories, image/signal processing on control systems and other applications. In general, SOFNN is an identification technique that automatically initiates, builds and fine-tunes the required network parameters. SOFNN evaluates required structures without predefined parameters or expressions regarding systems. SOFNN sets out to learn and configure a system's characteristics. Self-constructing and self-tuning features enable SOFNN to handle complex, non-linear, and time-varying systems with higher accuracy, making systems identification easier. SOFNN constructs and fine-tunes the system parameter through two phases. The two phases are the construction and the parameter-tuning phase. The two phases run concurrently allowing SOFNN to identify systems on-line.
Technical Paper

A Toxicological Evaluation Of Potential Thermal Degradation Products of Urea

2001-09-24
2001-01-3621
The purpose of this paper is to make a preliminary assessment of the potential toxicity of compounds that might be emitted from diesel vehicles using urea/SCR technology. The use of urea as a reductant in the removal of NOx from the exhaust of diesel-powered vehicles has the potential to emit at least seven thermal decomposition products and unreacted urea from the tail-pipe. These compounds include: urea, ammonia, cyanate ion, biuret, cyanuric acid, ammelide, ammeline, and melamine. The toxicity data base for these compounds, in general, is poor. In addition, there have been few, if any, studies examining the inhalation route of exposure - the most likely route of exposure for people from vehicle exhaust. The measurement and identification of these compounds from the exhaust of urea/SCR- equipped vehicles is needed to prioritize the kinds of health effects studies required to understand the toxicity of these compounds.
X