Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Modelling and Analysis of a Cooperative Adaptive Cruise Control (CACC) Algorithm for Fuel Economy

2024-04-09
2024-01-2564
Connectivity in ground vehicles allows vehicles to share crucial vehicle data, such as vehicle acceleration and speed, with each other. Using sensors such as radars and lidars, on the other hand, the intravehicular distance between a leader vehicle and a host vehicle can be detected. Cooperative Adaptive Cruise Control (CACC) builds upon ground vehicle connectivity and sensor information to form convoys with automated car following. CACC can also be used to improve fuel economy and mobility performance of vehicles in the said convoy. In this paper, a CACC system is presented, where the acceleration of the lead vehicle is used in the calculation of desired vehicle speed. In addition to the smooth car following abilities, the proposed CACC also has the capability to calculate a speed profile for the ego vehicle that is fuel efficient, making it an Ecological CACC (Eco-CACC) model.
Technical Paper

Trends in Driver Response to Forward Collision Warning and the Making of an Effective Alerting Strategy

2024-04-09
2024-01-2506
This paper compares the results from three human factors studies conducted in a motion-based simulator in 2008, 2014 and 2023, to highlight the trends in driver's response to Forward Collision Warning (FCW). The studies were motivated by the goal to develop an effective HMI (Human-Machine Interface) strategy that enables the required driver's response to FCW while minimizing the level of annoyance of the feature. All three studies evaluated driver response to a baseline-FCW and no-FCW conditions. Additionally, the 2023 study included two modified FCW chime variants: a softer FCW chime and a fading FCW chime. Sixteen (16) participants, balanced for gender and age, were tested for each group in all iterations of the studies. The participants drove in a high-fidelity simulator with a visual distraction task (number reading). After driving 15 minutes in a nighttime rural highway environment, a surprise forward collision threat arose during the distraction task.
Technical Paper

Side Impact Characteristics in Modern Light Vehicles

2024-04-09
2024-01-2646
Occupant protection in side impacts, in particular for near-side occupants, is a challenge due to the occupant’s close proximity to the impact. Near-side occupants have limited space to ride down the impact. Curtain and side airbags fill the gap between occupant and the side interior. This analysis was conducted to provide insight on the characteristics of side impacts and the relevancy of currently regulated test configurations. For this purpose, 2007-2015 NASS-CDS and 2017-2021 CISS side crash data were analyzed for towed light vehicles. 2008 and newer model year vehicle data was selected to ensure that most vehicles were equipped with side/curtain airbags. The results showed that side impacts accounted for approximately 26.7% of the vehicles involved and 18.9% of the vehicles with at least one seriously injured occupant. Most side impacts involved damage to the front and front-to-center of the vehicle.
Technical Paper

Connected Vehicle Data – Prognostics and Monetization Opportunity

2023-10-31
2023-01-1685
In recent years, the automotive industry has seen an exponential increase in the replacement of mechanical components with electronic-controlled components or systems. engine, transmission, brake, exhaust gas recirculation (EGR), lighting, driver-assist technologies, etc. are all monitored and/or controlled electronically. Connected vehicles are increasingly being used by Original Equipment Manufacturers (OEMs) to collect and transmit vehicle data in real-time via the use of various sensors, actuators, and communication technologies. Vehicle telematics devices can collect and transmit data about the vehicle location, speed, fuel efficiency, State Of Charge (SOC), auxiliary battery voltage, emissions, performance, and more. This data is sent over to the cloud via cellular networks, where it can be processed and analyzed to improve their products and services by automotive companies and/or fleet management.
Technical Paper

Verification of Driver Status Monitoring Camera Position Using Virtual Knowledge-Based Engineering

2023-04-11
2023-01-0090
A DMS (Driver Monitoring System) is one of the most important safety features that assist in the monitoring functions and alert drivers when distraction or drowsiness is detected. The system is based in a DSMC (Driver Status Monitoring Camera) mounted in the vehicle's dash, which has a predefined set of operational requirements that must be fulfilled to guarantee the correct operation of the system. These conditions represent a trade space analysis challenge for each vehicle since both the DSMC and the underlying vehicle’s requirements must be satisfied. Relying upon the camera’s manufacturer evaluation for every iteration of the vehicle’s design has proven to be time-consuming, resources-intensive, and ineffective from the decision-making standpoint.
Technical Paper

Residual Stress Induced Fretting Fatigue during Fatigue Testing for Materials Produced by Laser Powder Bed Fusion Process

2023-04-11
2023-01-0894
Fretting fatigue was observed in standard cylindrical fatigue samples at the regions in contact with the grips of the test frames during fatigue testing for AlSi10Mg aluminum alloy produced by laser powder bed fusion process (L-PBF). The failure of the fatigue sample grips occurs much earlier than the failure of the gauge section. This results in a damaged sample and the sample cannot be reused to continue the test. This type of failure is rarely seen in materials produced by traditional manufacturing processes. In this study, X-ray residual stress analysis was performed to understand the cause of failure for L-PBF AlSi10Mg with the as-built surface condition. The result indicates that the fretting fatigue failure was caused by the strong tensile residual stress in the as-built state combining with the fretting wear between the sample and the grip. A few potential solutions to avoid the fretting fatigue failure were investigated.
Technical Paper

ES2re, WS50M, and Human Body Models in Far-Side Pole Impacts

2023-04-11
2023-01-0558
Driver oblique far-side sled impacts were simulated with three surrogates. The EuroSID side impact dummy with rib extension (ES2re), the WorldSID side impact 50th percentile male dummy (WS50M), and the Global Human Body Modeling Consortium’s 50th percentile male human body (GHBM) models. The versions of the surrogates’ models were 7.0, 7.5.1, and 5.0, respectively. Surrogates were seated in the front left driver seat in a virtual generic crossover sled environment. The Finite Element (FE) based environment consisted of a driver seat, a center console, and a passenger seat. Two restraint systems were considered for each surrogate: belt only (BO) and belt plus a generic seat-mounted far-side impact airbag (BB). Surrogates were restrained using a 3-point belt that has a digressive shoulder force load limiter, and retractor, and anchor pretensioners. The far-side airbag used was a 37-liter in volume and has two chambers.
Technical Paper

An Evaluation of External Human-Machine Interfaces and Compliance with Federal Motor Vehicle Safety Standard 108

2023-04-11
2023-01-0583
For Automated Vehicles (AVs) to be successful, they must integrate into society in a way that makes everyone confident in how AVs work to serve people and their communities. This integration requires that AVs communicate effectively, not only with other vehicles, but with all road users, including pedestrians and cyclists. One proposed method of AV communication is through an external human-machine interface (eHMI). While many studies have evaluated eHMI solutions, few have considered their compliance with relevant Federal Motor Vehicle Safety Standards (FMVSS) and their scalability. This study evaluated the effectiveness of a lightbar eHMI to communicate AV intent by measuring user comprehension of the eHMI and its impact on pedestrians’ trust and acceptance of AVs.
Technical Paper

Evaluation of Drivers of Very Large Pickup Trucks: Size, Seated Height and Biomechanical Responses in Drop Tests

2023-04-11
2023-01-0649
This study focused on occupant responses in very large pickup trucks in rollovers and was conducted in three phases. Phase 1 - Field data analysis: In a prior study [9], 1998 to 2020 FARS data were analyzed; Pickup truck drivers with fatality were 7.4 kg heavier and 4.6 cm taller than passenger car drivers. Most pickup truck drivers were males. Phase 1 extended the study by focusing on the drivers of very large pickup trucks. The size of 1999-2016 Ford F-250 and F-350 drivers involved in fatal crashes was analyzed by age and sex. More than 90% of drivers were males. The average male driver was 179.5 ± 7.5 cm tall and weighed 89.6 ± 18.4 kg. Phase 2 – Surrogate study: Twenty-nine male surrogates were selected to represent the average size of male drivers of F-250 and F-350s involved in fatal crashes. On average, the volunteers weighed 88.6 ± 5.2 kg and were 180.0 ± 3.2 cm tall with a 95.2 ± 2.2 cm seated height.
Technical Paper

Test-in-Production Framework on a Microcontroller Environment

2022-03-29
2022-01-0112
In modern automobiles, many new complex features are enabled by software and sensors. When combined with the variability of real-world environments and scenarios, validation of this ever-increasing amount of software becomes complex, costly, and takes a lot of time. This challenges automakers ability to quickly and reliably develop and deploy new features and experiences that their customers want in the marketplace. While traditional validation methods and modern virtual validation environments can cover most new feature testing, it is challenging to cover certain real-world scenarios. These scenarios include variation in weather conditions, roadway environments, driver usage, and complex vehicle interactions. The current approach to covering these scenarios often relies on data collected from long vehicle test trips that try to capture as many of these unique situations as possible. These test trips contribute significantly to the validation cost and time of new features.
Journal Article

Game Theory-Based Modeling of Multi-Vehicle/Multi-Pedestrian Interaction at Unsignalized Crosswalks

2022-03-29
2022-01-0814
The improvement of road transport safety requires the development of advanced vehicle safety systems, whose development could be facilitated by using complex interaction models of different road users. To this end, this paper deals with the modeling of multi-vehicle/multi-pedestrian interactions at unsignalized crosswalks. This multi-agent modeling approach extends on the existing basic model covering only single-vehicle/single-pedestrian interactions. The basic model structure and parameters have remained the same, as it was previously experimentally calibrated and thoroughly verified. The proposed modeling procedure employs the basic model within the multi-agent setting based on its application to relevant single-vehicle and single-pedestrian pairs. The resulting, so-called pre-decisions are then used for making final crossing decisions in a current time step for each agent.
Journal Article

Improving Keyhole Stability during Laser Welding of AA5xxx Alloys

2022-03-29
2022-01-0247
Laser welding of the magnesium-bearing AA5xxx aluminum alloys is often beset by keyhole instability, especially in the lap through joint configuration. This phenomenon is characterized by periodic collapse of the keyhole leaving large voids in the weld zone. In addition, the top surface can exhibit undercut and roughness. In full penetration welds, keyhole instability can also produce a spikey root and severe top surface concavity. These discontinuities could prevent a weld from achieving engineering specification compliance, pose a craftsmanship concern, or reduce the strength and fatigue performance of the weld. In the case of a full penetration weld, a spikey root could compromise part fit-up and corrosion protection, or damage adjacent sheet metal, wiring, interior components, or trim.
Technical Paper

Green Light Optimized Speed Advisory (GLOSA) with Traffic Preview

2022-03-29
2022-01-0152
By utilizing the vehicle to infrastructure communication, the conventional Green Light Optimized Speed Advisory (GLOSA) applications give speed advisory range for drivers to travel to pass at the green light. However, these systems do not consider the traffic between the ego vehicle and the traffic light location, resulting in inaccurate speed advisories. Therefore, the driver needs to intuitively adjust the vehicle's speed to pass at the green light and avoid traffic in these scenarios. Furthermore, inaccurate speed advisories may result in unnecessary acceleration and deceleration, resulting in poor fuel efficiency and comfort. To address these shortcomings of conventional GLOSA, in this study, we proposed the utilization of collaborative perception messages shared by smart infrastructures to create an enhanced speed advisory for the connected vehicle drivers and automated vehicles.
Journal Article

Rear-End Impacts - Part 2: Sled Pulse Effect on Front-Seat Occupant Responses

2022-03-29
2022-01-0854
This study was conducted to assess the effects of differing rear impact pulse characteristics on restraint performance, front-seat occupant kinematics, biomechanical responses, and seat yielding. Five rear sled tests were conducted at 40.2 km/h using a modern seat. The sled buck was representative of a generic sport utility vehicle. A 50th percentile Hybrid III ATD was used. The peak accelerations, acceleration profiles and durations were varied. Three of the pulses were selected based on published information and two were modeled to assess the effects of peak acceleration occurring early and later within the pulse duration using a front and rear biased trapezoidal characteristic shape. The seatback angle at maximum rearward deformation varied from 46 to 67 degrees. It was lowest in Pulse 1 which simulates an 80 km/h car-to-car rear impact.
Journal Article

Rear-End Impacts - Part 1: Field and Test Data Analysis of Crash Characteristics

2022-03-29
2022-01-0859
Prior to developing or modifying the protocol of a performance evaluation test, it is important to identify field relevant conditions. The objective of this study was to assess the distribution of selected crash variables from rear crash field collisions involving modern vehicles. The number of exposed and serious-to-fatally injured non-ejected occupants was determined in 2008+ model year (MY) vehicles using the NASS-CDS and CISS databases. Selected crash variables were assessed for rear crashes, including severity (delta V), impact location, struck vehicle type, and striking objects. In addition, 15 EDRs were collected from 2017 to 2019 CISS cases involving 2008+ MY light vehicles with a rear delta V ranging from 32 to 48 km/h. Ten rear crash tests were also investigated to identify pulse characteristics in rear crashes. The tests included five vehicle-to-vehicle crash tests and five FMVSS 301R barrier tests matching the struck vehicle.
Technical Paper

A Systematic Approach to Develop Metaheuristic Traffic Simulation Models from Big Data Analytics on Real-World Data

2021-04-06
2021-01-0166
Researchers and engineers are utilizing big data analytics to draw further insights into transportation systems. Large amounts of data at the individual vehicle trip level are being collected and stored. The true potential of such data is still to be determined. In this paper, we are presenting a data-driven, novel, and intuitive approach to model driver behaviors using microscopic traffic simulation. Our approach utilizes metaheuristic methods to create an analytical tool to assess vehicle performance. Secondly, we show how microscopic simulation run outputs can be post-processed to obtain vehicle and trip level performance metrics. The methodology will form the basis for a data-driven approach to unearthing trip experiences as realized by drivers in the real world. The methodology will contribute to, A.) Using vehicle trajectory traces to identify underlying vehicle maneuver distributions as obtained from real-world driver data, B.)
Technical Paper

Application of Data Analytics to Decouple Historical Real-World Trip Trajectories into Representative Maneuvers for Driving Characterization

2021-04-06
2021-01-0169
Historical driver behavior and drive style are crucial inputs in addition to V2X connectivity data to predict future events as well as fuel consumption of the vehicle on a trip. A trip is a combination of different maneuvers a driver executes to navigate a route and interact with his/her environment including traffic, geography, topography, and weather. This study leverages big data analytics on real-world customer driving data to develop analytical modeling methodologies and algorithms to extract maneuver-based driving characteristics and generate a corresponding maneuver distribution. The distributions are further segmented by additional categories such as customer group and type of vehicle. These maneuver distributions are used to build an aggressivity distribution database which will serve as the parameter basis for further analysis with traffic simulation models.
Technical Paper

Assessing the Impacts of Dedicated CAV Lanes in a Connected Environment: An Application of Intelligent Transport Systems in Corktown, Michigan

2021-04-06
2021-01-0177
The interaction of Connect and Automated vehicles (CAV) with regular vehicles in the traffic stream has been extensively researched. Most studies, however, focus on calibrating driver behavior models for CAVs based on various levels of automation and driver aggressiveness. Other related studies largely focus on the coordination of CAVs and infrastructure like traffic signals to optimize traffic. However, the effects of different strategic flow management of CAVs in the traffic stream in the comparative scenario-based analysis is understudied. Thus, this study develops a framework and simulations for integrating CAVs in a corridor section. We developed a calibrated model with CAVs for a corridor section in Corktown, Michigan, and simulate how dedicated CAV lane operations can be implemented without significant change in existing infrastructure.
Technical Paper

Evaluation of Voice Biometrics for Identification and Authentication

2021-04-06
2021-01-0262
The work presented here is part of the research done in the field of voice biometrics. This paper helps to understand the state-of-the-art in speaker recognition technology potentially capable of solving challenges related to speaker identification (to identify a speaker among multiple speakers) and speaker verification/authentication (to recognize the current speaking person at a pre-defined access level and authenticate accordingly). The research was focused on performing an unbiased evaluation of two individual voice biometric services. The level of accuracy in identifying and authenticating individuals using these services provides an insight into the current state of technology and the state of what other dual authentication methods could be used to achieve a desired True Acceptance Rate (TAR) and False Acceptance Rates (FAR).
Technical Paper

Effect of ATD Size, Vehicle Interior and Restraint Misuse on Second-Row Occupant Kinematics in Frontal Sled Tests

2021-04-06
2021-01-0914
Interest in rear-seat occupant safety has increased in recent years. Information relevant to rear-seat occupant interior space and kinematics are needed to evaluate injury risks in real-world accidents. This study was conducted to first assess the effect of size and restraint conditions, including belt misuse, on second-row occupant kinematics and to then document key clearance measurements for an Anthropomorphic Test Device (ATD) seated in the second row in modern vehicles from model years 2015-2020. Twenty-two tests were performed with non-instrumented ATDs; three with a 5th percentile female Hybrid III, 10 tests with a 10-year-old Hybrid III, and 9 tests with a 6-year-old Hybrid III. Test conditions included two sled bucks (mid-size car and sport utility vehicle (SUV)), two test speeds (56 and 64 km/h), and various restraint configurations (properly restrained and improperly restrained configurations). Head and knee trajectories were assessed.
X