Refine Your Search

Topic

Author

Search Results

Technical Paper

A Structured Approach to the Development of a Logical Architecture for the Automotive Industry

2024-04-09
2024-01-2048
The automotive industry is currently experiencing a massive transformation, one like it has not quite seen in the past. With the advent of highly software-driven, always on, connected vehicles, the automotive industry is experiencing itself at a crossroads. While the traditional component-driven design approach to vehicle development worked in the favor of the industry for decades due to vehicles being mostly mechanical in nature, the industry now finds itself struggling to develop well-integrated vehicle solutions with the large dependency on software systems. The fast-paced nature of the software world makes it imperative to approach the development of automobiles from a Systems Engineering perspective. A function-based approach to the development of vehicle architectures can ensure cohesive systems development and a well-integrated vehicle.
Technical Paper

Model Based Systems Engineering Application in Automotive Industry

2023-04-11
2023-01-0091
Auto industry has faced constant challenges in the economic, technology and global trend in the recent years. This is changing the corporative mindset to find creative and innovative processes and methods to evolve the product development system to adjust and deliver competitive products that satisfy customers expectations. Integrating the work from different teams in an organization has been moving from simple roles and responsibilities definition with effective communication channels to a new vision where teamwork progresses in harmony and embraces change to satisfy customers as part of the process. The path to evolve work in engineering that relies on several computational tools continues. In this article, it is presented an integration of different tools to manage vehicle program changes using model-based systems engineering, the present work improves the reaction capabilities of the teams and enables to adjust to changes in the development of a vehicle.
Technical Paper

Test-in-Production Framework on a Microcontroller Environment

2022-03-29
2022-01-0112
In modern automobiles, many new complex features are enabled by software and sensors. When combined with the variability of real-world environments and scenarios, validation of this ever-increasing amount of software becomes complex, costly, and takes a lot of time. This challenges automakers ability to quickly and reliably develop and deploy new features and experiences that their customers want in the marketplace. While traditional validation methods and modern virtual validation environments can cover most new feature testing, it is challenging to cover certain real-world scenarios. These scenarios include variation in weather conditions, roadway environments, driver usage, and complex vehicle interactions. The current approach to covering these scenarios often relies on data collected from long vehicle test trips that try to capture as many of these unique situations as possible. These test trips contribute significantly to the validation cost and time of new features.
Technical Paper

Embedded Software development and testing of Controller Area Network Gateways using Vector CANoe tool

2022-02-04
2021-36-0073
Studies regarding the automotive communication networks has been a fast-growing subject of research through automotive companies. One of the main issues during a vehicle network prototype development is the necessity of a programmed hardware for gateway modules. The gateway developed by an automotive supplier, usually implemented at an Electronic Control Unit (ECU), is one of the last remaining modules to have a software available because it needs to wait the message list completion of all ECUs prior to set up its own message list and network interfaces. This paper proposes a method to design and test Controlled Area Network (CAN) gateways using Vector CANoe software by developing ways to facilitate a scalable code production in CAPL scripts. Use cases will use gatewayed signals virtually validated prior to software deployment, along with codes proposals and common cases examples.
Technical Paper

Assessment of Exhaust Actuator Control at Low Ambient Temperature Conditions

2021-04-06
2021-01-0681
Exhaust sensors and actuators used in automotive applications are subjected to wide variety of operating ambient conditions , the performance of these actuators is challenging especially at cold ambient operating conditions, active exhaust tuning valves with position sensors are used to adjust the sound levels, or noise, vibration and harshness (NVH) from a control unit within the vehicle that leads to an improved driving experience wherein the driver selects their preferred sound levels. However, the operating behavior is crucially influenced by the characteristics of the drive cycle and ambient temperature. The study in this paper is intended to evaluate the icing formation at the start of drive cycle and at different ambient temperature conditions. The test data were obtained through real road and chassis dyno testing at different ambient conditions.
Technical Paper

Mapping Methodology For Automated Browsing Of Vehicular Human-Machine Interface Object Trees

2021-03-26
2020-36-0144
This paper presents a decoupled solution for mapping and validating complex and dynamic user interfaces (UI). Creating unique and satisfying user experiences are becoming the focus of products whereas digital user interfaces are a big part of this delivery. This tendency is coming to complex real-time systems, thus, growing the need of a proper validation of digital UIs considering its intrinsic requirements and limitations. The previous framework that ran the touchscreen tests required changes in case of UI updates while the matrix-like structure proposed gives a correlation between all to all clickable objects thus mapping all possible pathways to the many different screens.
Technical Paper

Hardware-in-the-Loop, Traffic-in-the-Loop and Software-in-the-Loop Autonomous Vehicle Simulation for Mobility Studies

2020-04-14
2020-01-0704
This paper focuses on finding and analyzing the relevant parameters affecting traffic flow when autonomous vehicles are introduced for ride hailing applications and autonomous shuttles are introduced for circulator applications in geo-fenced urban areas. For this purpose, different scenarios have been created in traffic simulation software that model the different levels of autonomy, traffic density, routes, and other traffic elements. Similarly, software that specializes in vehicle dynamics, physical limitations, and vehicle control has been used to closely simulate realistic autonomous vehicle behavior under such scenarios. Different simulation tools for realistic autonomous vehicle simulation and traffic simulation have been merged together in this paper, creating a realistic simulator with Hardware-in-the-Loop (HiL), Traffic-in-the-Loop (TiL), and Software in-the-Loop (SiL) simulation capabilities.
Journal Article

Unified Power-Based Vehicle Fuel Consumption Model Covering a Range of Conditions

2020-04-14
2020-01-1278
Previously fuel consumption on a drive cycle has been shown to be proportional to traction work, with an offset for powertrain losses. This model had different transfer functions for different drive cycles, performance levels, and applied powertrain technologies. Following Soltic it is shown that if fuel usage and traction work are both expressed in terms of cycle average power, a wide range of drive cycles collapse to a single transfer function, where cycle average traction power captures the drive cycle and the vehicle size. If this transfer function is then normalized by weight, i.e. by working in cycle average power/weight (P/W), a linear model is obtained where the offset is mainly a function of rated performance and applied technology. A final normalization by rated power/weight as the primary performance metric further collapses the data to express the cycle average fuel power/rated power ratio as a function of cycle average traction power/rated power ratio.
Journal Article

Hardware Supported Data-Driven Modeling for ECU Function Development

2020-04-14
2020-01-1366
The powertrain module is being introduced to embedded System on Chips (SoCs) designed to increase available computational power. These high-performance SoCs have the potential to enhance the computational power along with providing on-board resources to support unexpected feature growth and on-demand customer requirements. This project will investigate the radial basis function (RBF) using the Gaussian process (GP) regression algorithm, the ETAS ASCMO tool, and the hardware accelerator Advanced Modeling Unit (AMU) being introduced by Infineon AURIX 2nd Generation. ETAS ASCMO is one of the solutions for data-driven modeling and model-based calibration. It enables users to accurately model, analyze, and optimize the behavior of complex systems with few measurements and advanced algorithms. Both steady state and transient system behaviors can be captured.
Technical Paper

Commercial vehicle pedal feeling comfort ranges definition

2020-01-13
2019-36-0016
The brake pedal is the brake system component that the driver fundamentally has contact and through its action wait the response of the whole system. Each OEM defines during vehicle conceptualization the behavior of brake pedal that characterizes the pedal feel that in general reflects not only the characteristic from that vehicle but also from the entire brand. Technically, the term known as Pedal Feel means the relation between the force applied on the pedal, the pedal travel and the deceleration achieved by the vehicle. Such relation curves are also analyzed in conjunction with objective analysis sheets where the vehicle brake behavior is analyzed in test track considering different deceleration conditions, force and pedal travel. On technical literature, it is possible to find some data and studies considering the hydraulic brakes behavior.
Technical Paper

Ignition Switch Material Definition to Avoid Hard to Start Issue

2020-01-13
2019-36-0138
Nowadays, develop and launch a new product in the market is hard to every company. When we talk about a launch new vehicle to the customers, this task could be considered more difficult than other products whether imagine how fast the technology should be integrated to vehicle. There are main pillars to be considered in this scenario: low cost, design, innovation, competitiveness and safety. Whereas Brazilian economic scenario, all OEM has to be aware to opportunity to make the product profitable and keep acceptable quality. This combination between low cost and quality could be broken or not distributed equally between the pillars. Based on that, in some cases could have a quality broken that will affect directly the customer. This paper will focus on project to define of the new ignition switch, when the main challenge to achieve the cost reduction target was defined to change a material to electrical terminals.
Technical Paper

Brake Pedal Feeling Comfort Analysis for Trucks with Pneumatic Brake System

2019-09-15
2019-01-2140
The brake pedal is the brake system component that the driver fundamentally has contact and through its action wait the response of the whole system. Each OEM defines during vehicle conceptualization the behavior of brake pedal that characterizes the pedal feel that in general reflects not only the characteristic from that vehicle but also from the entire brand. Technically, the term known as Pedal Feel means the relation between the force applied on the pedal, the pedal travel and the deceleration achieved by the vehicle. Such relation curves are also analyzed in conjunction with objective analysis sheets where the vehicle brake behavior is analyzed in test track considering different deceleration conditions, force and pedal travel. On technical literature, it is possible to find some data and studies considering the hydraulic brakes behavior.
Technical Paper

A Methodology of Real-World Fuel Consumption Estimation: Part 1. Drive Cycles

2018-04-03
2018-01-0644
To assess the fuel consumption of vehicles, three sets of input data are required; drive cycles, vehicle parameters, and environmental conditions. As the first part of a series of studies on real-world fuel consumption, this study focuses on the drive cycles. In principle, drive cycles should represent real-world usage. Some of them aim at a specific usage such as a city driving condition or an aggressive driving style. However, the definition of city or aggressive driving is very subjective and difficult to quantitatively correlate with the real-world usage. This study proposes a methodology to quantify the speed and dynamics of drive cycles, or vehicle speed traces in general, against the real-world usage. After reviewing parameter sets found in other studies, relative cubic speed (RCS) and positive kinetic energy (PKE) are selected to represent the speed and dynamics through energy flow balance at the wheels.
Technical Paper

A Side Impact Taxonomy for USA Field Data

2018-04-03
2018-01-1331
An eleven-group taxonomy was created to classify real-world side crashes from the Crashworthiness Data System (CDS) component of the National Automotive Sampling System (NASS). Three steps were taken to develop the classification scheme: (1) side-impact towaway crashes were identified by examining 1987-2016 model year light passenger vehicles with Collision Deformation Classification (CDC) data from the 1997-2015 calendar years of NASS; (2) case reviews, engineering judgments, and categorization assessments were conducted on these data to produce the eleven-group taxonomy; and (3) taxonomic groups were reviewed relative to regulated crash test procedures. Two of the taxonomic groups were found to have the most frequent crash types, each contributing approximately 22% to the total, followed closely by a third taxonomic group contributing approximately 19%.
Technical Paper

Methodology for Determination and Optimization of Bolted Joints

2017-11-07
2017-36-0294
In order to optimize the development of bolted joints used to components attachments in the Sidemember of commercial vehicles, the joints development has become relevant to better definition of the fasteners size, eliminating overweight and avoiding under or super-sized. This paper presents a development sequential approach of bolted joints applied on commercial vehicles ensuring the correct specifications usage of the fasteners and the joint to keep their clamp force. The evaluations were conducted based on theoretical and practical aspects applied on products and in the definition of all elements contained in a joint. The calculation methodology was developed based on standardized bolts and forces generated through the reactions of the components required for each vehicle family.
Technical Paper

Methodology of Automatic Slack Brake Adjuster Definition Considering Foundation Brake System Characteristics

2017-05-24
2017-36-0004
S-cam brakes concept are largely used by commercial vehicles around the world due to its low cost, easy maintenance and robustness. An important component of s-cam brakes is the slack adjuster, that is responsible for amplify brake chamber forces and assure correct lining and drum clearance. Therefore usually slack adjuster mechanism characteristics are defined only by empiric method considering trial and error tentative. This paper aims to demonstrate a methodology created to develop new air s-cam brakes slack adjuster definition taken in consideration its interface with other brake components. During this study was identified design specification for each component and its influence on adjustment process. It was verified the intrinsic characteristics of slack adjuster mechanism and developed a calculation tool to predict its actuation on the brake. The interface of slack adjuster with other foundation brake components and drum compliance were also studied.
Journal Article

Multibody Dynamics Cosimulation for Vehicle NVH Response Predictions

2017-03-28
2017-01-1054
At various milestones during a vehicle’s development program, different CAE models are created to assess NVH error states of concern. Moreover, these CAE models may be developed in different commercial CAE software packages, each one with its own unique advantages and strengths. Fortunately, due to the wide spread acceptance that the Functional Mock-up Interface (FMI) standard gained in the CAE community over the past few years, many commercial CAE software now support cosimulation in one form or the other. Cosimulation allows performing multi-domain/multi-resolution simulations of the vehicle, thereby combining the advantages of various modeling techniques and software. In this paper, we explore cosimulation of full 3D vehicle model developed in MSC ADAMS with 1D driveline model developed in LMS AMESim. The target application of this work is investigation of vehicle NVH error states associated with both hybridized and non-hybridized powertrains.
Technical Paper

Physical Drawbead Design and Modeling with ABAQUS/Isight

2017-03-28
2017-01-0305
This paper focus on the design approach of mapping the equivalent bead to the physical bead geometry. In principle, the physical character and geometry of equivalent bead is represented as restraining force (N/mm) and a line (bead center line). During draw development, the iterations are performed to conclude the combination of restraining force that obtains the desired strain state of a given panel. The objective of physical bead design to determine a bead geometry that has the capacity to generate the same force as specified in 2D plane strain condition. The software package ABAQUS/CAE/Isight with python script is utilized as primary tool in this study. In the approach, the bead geometry is sketched and parameterized in ABAQUS/CAE and optimized with Isight to finalize the bead geometry.
Technical Paper

A Comparison of Four Methods for Determining the Octane Index and K on a Modern Engine with Upstream, Port or Direct Injection

2017-03-28
2017-01-0666
Combustion in modern spark-ignition (SI) engines is increasingly knock-limited with the wide adoption of downsizing and turbocharging technologies. Fuel autoignition conditions are different in these engines compared to the standard Research Octane Number (RON) and Motor Octane Numbers (MON) tests. The Octane Index, OI = RON - K(RON-MON), has been proposed as a means to characterize the actual fuel anti-knock performance in modern engines. The K-factor, by definition equal to 0 and 1 for the RON and MON tests respectively, is intended to characterize the deviation of modern engine operation from these standard octane tests. Accurate knowledge of K is of central importance to the OI model; however, a single method for determining K has not been well accepted in the literature.
Technical Paper

Real-Time Implementation and Validation for Automated Path Following Lateral Control Using Hardware-in-the-Loop (HIL) Simulation

2017-03-28
2017-01-1683
Software for autonomous vehicles is highly complex and requires vast amount of vehicle testing to achieve a certain level of confidence in safety, quality and reliability. According to the RAND Corporation, a 100 vehicle fleet running 24 hours a day 365 days a year at a speed of 40 km/hr, would require 17 billion driven kilometers of testing and take 518 years to fully validate the software with 95% confidence such that its failure rate would be 20% better than the current human driver fatality rate [1]. In order to reduce cost and time to accelerate autonomous software development, Hardware-in-the-Loop (HIL) simulation is used to supplement vehicle testing. For autonomous vehicles, path following controls are an integral part for achieving lateral control. Combining the aforementioned concepts, this paper focuses on a real-time implementation of a path-following lateral controller, developed by Freund and Mayr [2].
X