Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Brake Flexible Dynamic Analysis Attached to McPherson Suspension, Optimizing the Input Parameters in IPS Cable Simulation

2016-10-25
2016-36-0157
The high level of reliability of virtual analysis for suspension system development should not be thinking only for comfort and performance purpose, considering the `growing number of failures due to the touch between components in dynamic condition. The study establishes a simple and optimized methodology, able to predict more accurately the flexible brake hose path subject to the steering motion and associates with the independent suspension course, aiming the best route in order to achieve a low cost and robust design. In turn, the flexible brake hose non-linear model invalidates the multibody study to get the best route. However, with the aid of motion making use of NX9 [1] CAD [2] software was prepared dynamic movement that subjects front independent suspension system that establishes a Cartesian routine that maps 977 points, much higher than 9 points from previous studies, comprising a more accurate path performed by the hose.
Technical Paper

Objective Vehicle Comfort Verification About Ride Smoothness Based on Psychophysics

2016-10-25
2016-36-0196
The purpose of the theme developed in this work is to increase the volume of information related to vehicle evaluation and how human perception can be translated into numbers, thus facilitating the process of definitions, refinement and analysis of its performance. Based on the discipline of psychophysics, where it is possible to study the relationship between stimulus and sensation and the use of post processing tool known as PSD (Power Spectral Density), post process the acceleration data of inputs perceived by the occupants of the vehicle, when driving in routes considered ergodic. By this, in a summarized way, get to human subjective perception of comfort. This material shows in a conceptual way a sequence of studies that were conducted to make it possible, to generate a performance classification of the subjective vehicle attribute of Smoothness, by processing values of acceleration measured the driver's seat.
Technical Paper

Technical Assessment of an Automotive System through the Methodology of Engineering Value / Analysis Value

2016-10-25
2016-36-0327
In the current automotive industry, in an increasingly challenging environment due to strong competition, to develop a product that performs its functions objectively, with quality and mainly with the lowest possible cost, these are the keys to conquer competitive advantage. This paper is intended to explore cost reduction of an automotive system by using the techniques of the methodology EV / AV (Engineering Value / Analysis Value). The analysis are framed as exploratory, in the form of study, with ratings of the components and their functions, followed by the generation of ideas with the completion of an indication of a great potential for a product development with optimized cost.
Technical Paper

Acoustic Development Differences Between Theoretical And Experimental Process for Automotive Exhaust System

2015-09-22
2015-36-0277
Acoustics, in a broad sense, is an essential product attribute in the automotive industry, therefore, it is relevant to study and compare theoretical and numerical predictions to experimental acoustic measurements, key elements of many acoustic development processes. The numerical methods used in the industry for acoustic predictions are widely used for exhaust system optimization. However, the numerical and theoretical predictions very often differ from experimental results, due to modeling simplifications, temperature variations (which have high influence on speed of sound), manufacturing variations in prototype parts among others. This article aims to demonstrate the relevant steps for acoustics development applied in automotive exhaust systems and present a comparative study between experimental tests and computer simulations results for each process. The exhaust system chosen for this development was intended for a popular car 4-cylinder 1.0-liter engine.
Technical Paper

Vehicle Interior Noise Reduction Using Innovative Roof Trim Structure

2014-11-04
2014-36-0767
It is known acoustic comfort is a key feature to meet customer expectations for many products. In the current automotive industry, vehicle interior quietness is seen as one of the most important product attributes regarding perceived quality. A quiet interior can be achieved through an appropriate balance of noise sources levels and acoustic materials. However, the choice of the most efficient acoustic content may be challenging under severe cost and mass restraints commonly found in emerging market vehicles. Therefore, it is fundamental to develop efficient materials which will provide high acoustic performance with lower weight and cost. In this paper the fine tuning of the headliner structure is presented as an efficient way to increase acoustic performance. Structures currently employed for this vehicle subsystem are described. Airflow resistance and sound absorption measurements are used to guide development and make precise manufacturing process changes.
Technical Paper

Using Spherical Beamforming to Evaluate Wind Noise Paths

2014-11-04
2014-36-0791
Microphone array based techniques have a growing range of applications in the vehicle development process. This paper evaluates the use of Spherical Beamforming (SB) to investigate the transmission of wind-generated noise into the passenger cabin, as one of the alternative ways to perform in-vehicle troubleshooting and design optimization. On track measurements at dominant wind noise conditions are taken with the spherical microphone array positioned at the front passenger head location. Experimental diligence and careful processing necessary to enable concise conclusions are briefly described. The application of Spherical Harmonics Angularly Resolved Pressure (SHARP) and the Filter-And-Sum (FAS) algorithms is compared. Data analysis variables, run-to-run repeatability and system capability to identify design modifications are studied.
Technical Paper

Front of Dash Pass-Through Design Optimization

2014-09-30
2014-36-0219
Product Design is a process of creating new product by an organization or business entity for its customer. Being part of a stage in a product life cycle, it is very important that the highest level of effort is being put in the stage. The Design for Six Sigma (DFSS) methodology consists of a collection of tools, needs-gathering, engineering, statistical methods, and best practices that find use in product development. DFSS has the objective of determining the needs of customers and the business, and driving those needs into the product solution so created. In this paper the DFSS methodology is employed to develop the optimal solution to enhance sound transmission loss in a vehicle front of dash pass-through. An integrated approach using acoustic holography and beamforming Noise Source Identification (NSI) techniques is presented as a manner to improve sound insulation during vehicle development.
Technical Paper

Vehicle Restraint System Optimization for Frontal Impact

2013-10-07
2013-36-0473
The Brazilian Automotive regulations that are aimed towards the safety of drivers, passengers and pedestrians have gone through recent changes to prevent and/or minimize injury and trauma from different types of accidents. Until now, National Traffic Council (CONTRAN) Resolution n° 14/98 required vehicles to only have safety belts for an occupant restraint system, and frontal airbags were not required. Since the recent CONTRAN n° 311/09 Resolution requires mandatory frontal airbags, the occupant restraint system must be tuned due to the interaction with different components that may make up the system, like safety belts with pretensioners and seatbelt load limiting devices. The present study was developed to optimize the restraint system of a current vehicle in production, while focusing on minimizing the vehicle complexity. The optimization tool helped to develop a robust restraint system for the frontal passenger during a frontal impact [1].
Technical Paper

Blanks Physical Parameters Optimization for Automotive Panels Deep Drawing

2013-10-07
2013-36-0204
This work conducted an optimization in sheet metal blank's sizes for cold pressing automotive parts, comparing dimensional characteristics of automotive hood outer panels deep drawn with commonly used blank sizes for this process. As a result, it was possible to suggest modifications to smaller blank sizes, accordingly to the improvement accomplished in this work. The experimental study was conducted from observations in part's superficial aspects after its deep drawing process, which was realized in a commonly used tooling for automotive industry, with a blank's width reduction for the suggested case. The results showed a cost reduction opportunity based in this optimization.
Technical Paper

Car Suspension Global Product Development: Analysis of Multiple Requirements and Resources Targeting Optimized Results.

2011-10-04
2011-36-0020
In a growing global environment, new products development demands balancing regional requirements and resources in the proposed solutions targeting optimal results. The interaction between Development Centers must pursue, following clearly defined rules, proposals that consider factors from all involved regions. This paper proposes description of important aspects to be considered in Car Suspension Global Product Developments.
Technical Paper

Computational method to assess the SUV drivers' dynamics due to rollover crashes

2010-10-06
2010-36-0223
Even though the rollover is not the most frequent type of accident, it is of the greatest significance with respect to injury and trauma caused to the vehicle occupants. The need to reduce death incidence and serious injuries has increased the importance of computational simulations and prototype testing. This study presents finite element model to simulate rollover events and to predict possible injuries caused in the head, neck, thorax and cervical spine. Numerical models of a sport utility vehicle (SUV) are simulated including anthropomorphic dummy to represent the driver. The injury risks and traumas are verified to the driver considering belted and unbelted dummies. The computational methodology developed proved to be efficient for the evaluation of the vehicle's roof structure in rollover events.
Technical Paper

ISO Headform Pedestrian Protection test results comparison at critical bonnet regions

2010-10-06
2010-36-0236
Test Protocols for pedestrian head protection in a car pedestrian accident have been discussed for several Technical Communities in order to identify ideal boundary test conditions to evaluate injury limits. With the purpose to harmonize with final Global Technical Regulation 9 for Pedestrian Protection published by ECE in January 2009, European New Car Assessment Program (ENCAP) has changed their Child and Adult headform weight and geometry boundary test conditions. However 5 Kph remains as difference between both protocols. This work presents a comparative head impact test analysis for both headform at ENCAP and GTR#9 boundary test conditions when performed at critical bonnet regions.
Technical Paper

Control of Airborne Road Noise Using Sealers

2010-10-06
2010-36-0458
Noise generated during tire/road interaction has significant impact on the acoustic comfort of a vehicle. One of the most common approaches to attenuate road noise levels consists on the addition of mass treatments to the vehicle panels. However, the acoustic performance of sealing elements is also relevant and has an important contribution to the noise transmission into the vehicle interior. In this paper the correct balance between the mass added to treat vehicle panels and sealing content is investigated. The procedure to quantify the critical road noise transmission paths consists of recording interior noise levels as applied treatment is removed from potential weak areas, such as wheelhouses, floor, doors and body pillars. It is observed that the noise propagation through body pillars has a direct influence on road noise levels.
Technical Paper

Computational Methodologies for Vehicles Roof Strength Assessment to Prevent Occupants Injury in Rollover Crashes

2009-10-06
2009-36-0267
Among all types of vehicle crashes, rollover is the most complex and yet least understood. During the last decades, a constant increase in the studies involving rollover crashes and injuries associated with it can be observed. Although the rollover is not the most frequent type of accident, it is of the greatest significance with respect to injury and trauma caused to the vehicle occupants. The existing standards and procedures to test rollover crashworthiness are still not suitable to computer simulation because of the huge computational effort required, and the need of faithful/overly complex representation of the aspects involved in real crashes. The objective of the present work is the development of computational models particularly adapted to simulate different standards and procedures used to evaluate the vehicles' roof strength. The models are compared with other approaches, and their advantages/disadvantages are discussed.
Technical Paper

A case-study about side door closing effort

2008-10-07
2008-36-0154
Door Closing Effort is one of the first impressions a potential customer has about a vehicle. The energy someone needs to give out to push and lock a side door vehicle is easily felt and can enhance the impression of a robust and high quality design vehicle. In other words, Door Closing Effort is one of the issues manufacturers shall look over in order to achieve perfect levels of Human Vehicle Integration (HVI). The aim of this paper is to present a case study of Side Door Closing Effort of a specific Hummer vehicle. It will be shown how door closing effort varies according to several parameters, and how to improve the design and/or production process in view of achieving better effort levels, considering the Hummer case as a background. Several variables that influence on the overall energy of this process have been evaluated, and the physical differences were weighted to demonstrate what really counts for reaching a comfortable level of Door Closing Effort.
Technical Paper

A Case Study About Side Door Closing Sound Quality

2008-03-30
2008-36-0590
Side Door Closing Sound Quality is one of the first impressions a potential customer has about a vehicle. It can enhance an impression of robust and high quality vehicle. This paper is a study of Side Door Closing Sound of a specific vehicle model. The main objective is to understand how Door Closing Sound Quality varies over several vehicles samples and how to improve the design and/or production process in order to achieve better Sound Quality. Two vehicles (same model) with distinct performance have been chosen among several samples. Both have been evaluated and the physical differences are weighted to realize what really matter for Door Closing Sound Quality.
Technical Paper

Product Dimensional Optimization - Applying and Validating GD&T by ASME Y 14.5 M

2003-11-18
2003-01-3619
This article is the sintezis of vehicle development process, starting from its characteristics and included in a competitive market, and shows the dimensional optimization process application and validation using the GD&T by ASME 14.5 M. INDEX KEY WORDS INTRODUTION TECHNICAL GROUNDING STUDY EXAMPLE CHOICE PROCESS STUDY EXAMPLE APPLYING AND VALIDATING GD&T BY ASME 14.5M STANDARD STUDY EXAMPLE RESULTS FINAL CONSIDERATION APPENDIX BIBLIOGRAPHY
X