Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Evaluation of Methods for Identification of Driving Styles and Simulation-Based Analysis of their Influence on Energy Consumption on the Example of a Hybrid Drive Train

2020-04-14
2020-01-0443
Due to current progresses in the field of driver assistance systems and the continuously growing electrification of vehicle drive trains, the evaluation of driver behavior has become an important part in the development process of modern cars. Findings from driver analyses are used for the creation of individual profiles, which can be permanently adapted due to ongoing data processing. A benefit of data-based dynamic control systems lies in the possibility to individually configure the vehicle behavior for a specific driver, which can contribute to increasing customer acceptance and satisfaction. In this way, an optimization of the control behavior between driver and vehicle and the resulting mutual system learning and -adjustment hold great potential for improvements in driving behavior, safety and energy consumption.
Technical Paper

Highly Dynamic Intake and Exhaust Back Pressure Control

2019-01-09
2019-26-0147
Measuring emissions of internal combustion engines-not only at steady-state conditions, but also with highly dynamic test cycles-is an important issue in modern engine development. Due to the fact that ambient conditions have an essential influence on power and emissions of internal combustion engines, test beds used for such measurements typically incorporate intake air and exhaust back pressure control for reasons of repeatability, accuracy and comparability. As test cycle dynamics get faster and legal pressure tolerances get narrower, pressure control becomes more demanding and simple PI control schemes are pushed to their limits; therefore, more sophisticated control schemes are necessary. In this paper, a linearised model is first derived and then used to both simplify and optimise PI controller tuning. This is done by means of frequency domain methods. Limitations to such controllers and possible approaches to overcome them are discussed.
Technical Paper

Experimental Investigations Regarding the Potential of an Electronic Ignition Timing Control for a Lawn Mower Engine

2016-11-08
2016-32-0083
In order to fulfill future regulations regarding emissions and CO2 reduction, the small engine market inclines to migrate from carburetor systems to cleaner, more efficient electronic ignition controls and electronic fuel injection systems. When implementing such mechatronic systems in small engine applications, one has to consider specific boundary conditions like the lack of relevant sensors, limited possibilities in terms of space and of course the necessity to keep the costs as low as possible. Especially in the non-road mobile machinery (NRMM) segment, the absence of sensors makes it difficult to apply standard electronic control systems, which are based on engine related input signals provided by sensors. One engine related signal, which is even provided by the simplest engine setup, is some form of the crankshaft speed since it is essential for the functionality of the engine.
Journal Article

A Model-Based Configuration Approach for Automotive Real-Time Operating Systems

2015-04-14
2015-01-0183
Automotive embedded systems have become very complex, are strongly integrated, and the safety-criticality and real-time constraints of these systems raise new challenges. The OSEK/VDX standard provides an open-ended architecture for distributed real-time capable units in vehicles. This is supported by the OSEK Implementation Language (OIL), a language aiming at specifying the configuration of these real-time operating systems. The challenge, however, is to ensure consistency of the concept constraints and configurations along the entire product development. The contribution of this paper is to bridge the existing gap between model-driven systems engineering and software engineering for automotive real-time operating systems (RTOS). For this purpose a bidirectional tool bridge has been established based on OSEK OIL exchange format files.
Technical Paper

Vibration Comfort Control for HEV Based on Machine Learning

2014-06-30
2014-01-2091
Hybrid electric vehicles (HEVs) with a power-split system offer a variety of possibilities in reduction of CO2 emissions and fuel consumption. Power-split systems use a planetary gear sets to create a strong mechanical coupling between the internal combustion engine, the generator and the electric motor. This concept offers rather low oscillations and therefore passive damping components are not needed. Nevertheless, during acceleration or because of external disturbances, oscillations which are mostly influenced by the ICE, can still occur which leads to a drivability and performance downgrade. This paper proposes a design of an active damping control system which uses the electric motor to suppress those oscillations instead of handling them within the ICE control unit. The control algorithm is implemented as part of an existing hybrid controller without any additional hardware introduced.
Journal Article

State of the Art and Future Trends of Electric Drives and Power Electronics for Automotive Engineering

2014-04-01
2014-01-1888
Discussions about the optimal technology of propulsion systems for future ground vehicles have been raising over the last few years. Several options include different types of technologies. However, those who are advocating conventional internal combustion engines are faced with the fact that fossil fuels are limited. Others favor hydrogen fuel as the solution for the future, either in combination with combustion engines or as an energy carrier for fuel cells. In any case, the production and storage of hydrogen is an ongoing challenge of numerous research works. Finally, there are battery-electric or hybrid propulsion systems in use, gaining more and more popularity worldwide. Ongoing advances in power electronics help to improve control systems within automotive applications. New developed or designed components enable more efficient system architectures and control.
Technical Paper

Fundamental Investigations on the Boost Pressure Control System of Charged Aircraft Engines in the Aviation Class ELA1 / Approved Systems Versus New Solutions

2012-10-23
2012-32-0048
Aircraft engines in the (ELA1) category, with a maximum power of up to 100kW, are characterized by a verified state of the art technology. New developments of engine technologies and control methods are very slowly being introduced into this engine segment. This trend is based on the fact that new technologies implemented in aircraft engines must be thoroughly certified and validated in a very complex and documented procedure. For this reason, most of the engines in this class are equipped with a carburetor as an air/fuel mixture preparation system. Moreover, naturally aspirated spark ignited engines are widely used in the aircraft category, with a take-off weight of up to 1000kg.
X