Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Lateral Control System for Autonomous Lane Change System on Highways

2016-04-05
2016-01-1641
In this paper, we propose a vision based lateral control scheme for autonomous lane change system on highways. Three main techniques are proposed, to improve the lane keeping/lane change performance, and to reduce the ripple in the yaw rate on highways. First, we propose a model based lane prediction method to cope with the momentary failure of lane detection. Second, we innovate an approach to steering wheel angle control based on torque overlay for the EPS of the lateral control. Finally, the multi-rate lane-keeping control scheme is proposed to improve the lateral control performance and to reduce the ripple in the yaw rate. The performance of the proposed method was experimentally evaluated via test vehicle
Journal Article

Mode-Dynamic Task Allocation and Scheduling for an Engine Management Real-Time System Using a Multicore Microcontroller

2014-04-01
2014-01-0257
A variety of methodologies to use embedded multicore controllers efficiently has been discussed in the last years. Several assumptions are usually made in the automotive domain, such as static assignment of tasks to the cores. This paper shows an approach for efficient task allocation depending on different system modes. An engine management system (EMS) is used as application example, and the performance improvement compared to static allocation is assessed. The paper is structured as follows: First the control algorithms for the EMS will be classified according to operating modes. The classified algorithms will be allocated to the cores, depending on the operating mode. We identify mode transition points, allowing a reliable switch without neglecting timing requirements. As a next step, it will be shown that a load distribution by mode-dependent task allocation would be better balanced than a static task allocation.
Technical Paper

ABS/ESC/EPB Control of Electronic Wedge Brake

2010-04-12
2010-01-0074
A new control algorithm of a wedge brake system has been developed. The proposed control algorithm is based on the position control and current control of electronic wedge brake(EWB). The EWB control system in rear wheel has both active braking functions like ABS and ESC and convenient function such as EPB. In this paper, development of control algorithm was performed using hybrid brake system(HBS) which consists of hydraulic brake in front wheel and electronic brake in rear wheel. At first, the configuration of EWB system is explained. Next, structure of electronic control in HBS is explained. And then ABS/ESC/EPB control algorithms are shown. ABS control algorithm has wheel slip calculation, wheel error calculation, wheel slip control, position control, current control, and duty control. ESC algorithm consists of yaw error calculation, yaw moment control, wheel slip control, position control, current control, and duty control.
Technical Paper

Vehicle electric power simulator for optimizing the electric charging system

2000-06-12
2000-05-0054
The electrical power system is the vital lifeline to most of the control systems on modern vehicles. The demands on the system are highly complex, and a detailed understanding of the system behavior is necessary both to the process of systems integration and to the economic design of a specific control system or actuator. The vehicle electric power system, which consists of two major components: a generator and a battery, has to provide numerous electrical and electronic systems with enough electrical energy. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight are required when the capacities of the generator and the battery are to be determined for a vehicle. An easy-to-use and inexpensive simulation program may be needed to avoid the over/under design problem of the electric power system. A vehicle electric power simulator is developed in this study.
X