Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Road Traffic Control by Regulating Street Noise Propagation in an Urban Area

2009-11-02
2009-01-2795
Recently, the control of traffic flow has been proposed using several types of criteria (e.g. minimum-time control, minimum fuel control and so on). Most recently, an environmental noise pollution problem caused by the road traffic is being aggravated more and more by the consolidation and expansion of roadway system particularly in urban areas. However, the objective of this paper is to control road traffic flow by regulating traffic noise propagation in an urban area in Cairo city. The results of traffic noise prediction obtained by trending of the experimental data collecting by systematic noise measurement and the evaluation of the traffic noise which is in close connection with physical parameters of traffic flow and noise propagation characteristics is presented. The analysis of road traffic flow noise control is based on the mixed integer non-linear programming technique, where the optimal control strategy is used.
Technical Paper

Road Humps Design Improvement Using Genetic Algorithms

2009-04-20
2009-01-0466
The number of speed humps (sleeping policemen) has seen a global increase in the last decade. This paper addresses the geometric requirements of these humps using Genetic Algorithms optimization techniques to control the speed, stability, and ride feel of the traversing vehicles. The interaction between road hump profile and the modeled vehicles (passenger and a two-axle truck) are studied with a dynamic model. The shape of the proposed profile is described by numbers of amplitudes of harmonic functions. The extreme acceleration of the drivers’ seats of the vehicles traversing the hump is set as multiobjective function for the optimization process, taking into consideration the road-holding ability represented by the tire lift-off speed. The results show that hump geometry can be improved while fulfilling the requirements of speed control and vehicle dynamic responses.
Technical Paper

Effect of Laterally Banked Roadways on the Rollover Threshold of Partially Filled Road Tankers

2003-11-10
2003-01-3387
In this paper, a direct technique to estimate the rollover threshold limits of partially filled tank trucks is applied for banked roadways. Overturning and restoring moments are calculated as functions of tank shape, fill level, gradient of both liquid cargo free surface and the lateral inclination of banked road surfaces. The static rollover threshold of tanker trucks traveling on laterally banked roadways is estimated by balancing the net value of the total overturning moment against the net value of the restoring moment. Different filling ratios are considered for circular, elliptical and modified tank vehicles. The rollover threshold limits are calculated considering a superelevation range of (0.0-0.1) for the lateral road banking as defined by Blue and Kulakowski (1991). It is shown that the vehicle rollover threshold limit increases with an increase of the angle of the lateral road banking.
Technical Paper

Aerodynamic Effects on Ride Comfort and Road Holding of Actively Suspended Vehicles

2002-07-09
2002-01-2205
This paper is concerned with the analysis of the performance of actively suspended vehicles when the effects of the aerodynamics are considered. The investigation is wholly theoretical and treats a half vehicle model, active suspension, through simulation of running at different speeds on a random-profile road. Using classical control laws, which do not account for aerodynamic effects, it is shown that starting from a vehicle speed of 35 m/s, ride comfort and road holding parameters significantly deteriorate. A method is introduced to modify the control strategy so that these effects can be taken into consideration. Various forms of control laws are presented, and conclusions are drawn to specify the benefits that could be achieved from this modified control strategy.
X