Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Preview Type-2 Fuzzy Controller Design for the Semi-active Suspension to Improve Adhesion Characteristics during Braking and Handling

2021-06-28
2021-01-5069
A full vehicle of a preview control semi-active suspension system based on an interval type-2 fuzzy controller design using a magnetorheological (MR) damper to improve ride comfort is investigated in this paper. It is integrated with the force distribution system to obtain the optimal rate of road adhesion during braking and handling. The nonlinear suspension model is derived by considering vertical, pitch, and roll motions. The preview interval type-2 fuzzy technique is designed as a system controller, and it is attached with a Signum function method as a damper controller to turn on the voltage for the MR damper. This voltage is adjusted for each wheel based on the external excitation generated by road roughness in order to enhance ride comfort. To describe the effectiveness and adaptable responses of the preview controlled semi-active system, the performance is compared with both the passive and MR passive suspension systems during time and frequency domains.
Technical Paper

Effect of Semi-active Suspension Controller Design Using Magnetorheological Fluid Damper on Vehicle Traction Performance

2020-10-30
2020-01-5101
In order to achieve the high capability of the ride comfort and regulating the tire slip ratio, a preview of a nonlinear semi-active vibration control suspension system using a magnetorheological (MR) fluid damper is integrated with traction control in this paper. A controlled semi-active suspension system, which consists of the system controller and damper controller, was used to develop ride comfort, while the traction controller is utilized to reduce a generated slip between the vehicle speed and rotational rate of the tire. Both Fractional-Order Filtered Proportional-Integral-Derivative (P¯IλDμ) and Fuzzy Logic connected either series or parallel with P¯IλDμ are designed as various methodologies of a system controller to generate optimal tracking of the desired damping force. The signum function method is modified as a damper controller to calculate an applied input voltage to the MR damper coil based on both preview signals and the desired damping force tracking.
Technical Paper

A Tire Work Load (TWL) Based Controller for Active Independent Front Steering System (AIFS)

2020-04-14
2020-01-0648
Vehicle Handling performance depends on many parameters. One of the most important parameters is the dynamic behavior of the steering system. However, steering system had been enhanced thoroughly over the past decade where Active Front Steering (AFS) is now present and other system as Active Independent Front Steering (AIFS) is currently in the research phase. Actually, AFS system adopt the front wheels’ angles base on the actual input steering angle from the driver according to vehicle handling dynamics performance. While, the AIFS controls the angle of each front wheel individually to avoid reaching the saturation limits of any of the front wheels’ adhesion. In this paper modeling and analysis of an AIFS is presented with Tire Work Load (TWL) based controller. Magic Formula tire model is implemented to represent the tire in lateral slip condition.
Technical Paper

On The Integration of Actively Controlled Longitudinal/Lateral Dynamics Chassis Systems

2014-04-01
2014-01-0864
Integral Control strategy for vehicle chassis systems had been of great interest for vehicle designers in the last decade. This paper represents the interaction of longitudinal control and lateral control. In other words the traction control system and handling control system. Definitely, tire properties are playing a vital role in such interaction as it is responsible for the generated forces in both directions. A seven degrees of freedom half vehicle model is derived and used to investigate this interaction. The vehicle body is represented as a rigid body with three degrees of freedom, lateral and longitudinal, and yaw motions. The other four degrees are the two rotation motion of the front wheel and the rear wheel. This two motions for each wheel are spin motion and the steering motion. The traction controller is designed to modulate engine torque through adjusting the throttle angle of the engine upon utilized adhesion condition at the driving road wheels.
Technical Paper

Influence of Surface Modifications on Vehicle Disc Brake Squeal

2009-06-15
2009-01-1977
Squeal from brakes is a problem in the automotive industry and large efforts are made to understand the squeal tendencies. The approach taken is mainly to change the design of the caliper, fine-tune the brake pad material and finally to trim the introducing shims on the backside of the pads. Despite these efforts still no general solutions exist. To advance the situation, a deeper understanding of the actual source of excitation of the sound in the friction interface is needed. However, in the present investigation the surfaces modifications of brake disc and pad have been tested with respect to the understanding properties. The surfaces modifications are slotted pad material and coated disc. All tests have been made in a brake test stand consisting of a complete front wheel corner of a vehicle. The changes have resulted in a significant understand of the generated noise.
Technical Paper

Integrated Control, Regulated DC Supply with High Power Quality for Automotive Applications

2008-10-07
2008-01-2710
The DC power supply is ingredient part in the automotive industries as it has been used as a DC power supplies for a wide range of loads. Meanwhile, it is mandatory for battery charging. These types however, causes many problems such as poor power factor, high input current harmonics distortion and uncontrolled DC voltage. In this paper, an improved input power factor correction that uses a combined control system consists of two nested loops with a feedback of the DC voltage and input current as long as a feed forward from the output power. The system has been analyzed, modeled, simulated and experimentally verified. The novel feature of the proposed control scheme resides in fact that it is not only achieve nearly unity power factor with minimum input current total harmonics distortion only but it also introduce superior performance in DC voltage transient conditions.
Technical Paper

Influence of Active Suspension Preview Control on the Vehicle Lateral Dynamics

2007-05-15
2007-01-2347
The dynamics of vehicles became one of the most important aspects for current developments of electronically controlled steering, suspension and traction/braking systems. However, most of the published research on vehicle maneuverability doesn't take into account the effect of the dynamic tire load and its variation on uneven roads. Clearly, it was stated that using a suitable active suspension system could reduce this dynamic tire load. This dynamic tire load is playing a vital role as it is the major link between the vertical and lateral forces exerted on the road, which affects the lateral dynamics of the vehicle. In this paper, a practical hydro-pneumatic limited bandwidth active suspension system with and without wheelbase preview control is used to study its influence on the vehicle stability in lateral direction. The model is a longitudinal half car with four degrees of freedom.
Technical Paper

New Suspension Design for Heavy Duty Trucks: Dynamic Considerations

2000-12-04
2000-01-3447
It is well known that the excessive levels of vibration in heavy vehicles negatively affect driver comfortability, cargo safety and road condition. The current challenge in the field of suspension design for heavy vehicles is to optimize the suspension dynamic parameters to improve such requirements. Almost all of the previous work in this field is based on applying the mathematical optimization considering active or passive suspension systems to obtain the optimal dynamic parameters. In this work a new passive suspension systems for heavy trucks is suggested and compared with the conventional passive suspension systems. The new systems rely on transferring the vertical motion, (vibration), into horizontal motion through a bell-crank mechanism to be taken by a horizontal passive suspension system. The system dynamic parameters like body acceleration, suspension travel and dynamic tire load are calculated assuming random excitation due to road irregularities.
X