Refine Your Search

Search Results

Technical Paper

Application of MC Method-Based H2 Fueling

2012-04-16
2012-01-1223
To address challenges related to refueling with compressed hydrogen, a simple, analytical method has been developed that allows a hydrogen station to directly and accurately calculate an end-of-fill temperature in a hydrogen tank and thereby maximize the fill quantity and minimize the refueling time. This is referred to as the MC Fueling Method, where MC represents total heat capacity. The MC Method incorporates a set of thermodynamic parameters for the tank system that are used by the station in a simple analytical equation along with measured values of dispensed hydrogen temperature and pressure at the station. These parameters can be communicated to the hydrogen station either directly from the vehicle or from a database that is accessible by the station. Because the MC Method is based on direct measurements of actual thermodynamic conditions at the station, and quantified thermodynamic behavior of the tank system, highly accurate tank filling results can be achieved.
Technical Paper

Actual Recyclability of Selected Honda Vehicles

2004-03-08
2004-01-0246
The purpose of the recyclability pilot project was to evaluate and confirm the reality of reuse, material recycling and landfill potential of parts and components over a range of Honda vehicles by model and year. A total of 18 vehicles, model years ranging from 1982 to 2001, were selected for study and processed at two automotive recycling centers and a scrap metal processing facility with an automotive shredder. The automotive dismantlers identified which parts and components were removed for reuse or remained with the hulk for further processing at an automotive shredder facility. Dismantling times and part weights were recorded and dismantling procedures were videotaped. The remaining hulks were delivered to the scrap metal processing facility for further processing. After shredding, the ferrous, nonferrous and landfill materials were separately collected for determining weights of these different process outputs.
X