Refine Your Search

Topic

Author

Search Results

Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

Development of Noise Diagnosis and Prediction Technology for Column-Based Electric Power Steering Systems Using Vehicle Controller Area Network Data

2024-04-09
2024-01-2897
The steering system is a critical component for controlling a vehicle's direction. In the context of Advanced Driver Assistance Systems (ADAS) and autonomous vehicles, where drivers may not always be actively holding the steering wheel, early detection of precursor noise signals is essential to prevent serious accidents resulting from the loss of steering system functionality. It is therefore imperative to develop a device capable of early detection and notification of steering system malfunctions. Therefore, the current study aimed to quantify the noise levels generated within the Column-based Electric Power Steering (C-EPS) system of a D-segment sedan. To this end, we measured the uniaxial acceleration in nine noise-generating areas while simultaneously collecting data from three Controller Area Network (CAN) sources that are directly related to steering operation.
Technical Paper

A Preliminary Study on the Evaporative Cooling System for FCEV

2024-04-09
2024-01-2406
The existing FCEV have been developed with only a few vehicle models. With the diversification of both passenger and commercial FCEV lineups, as well as the increasing demand for vehicle trailer towing, there is a growing need for high-capacity fuel cell stacks to be applied in vehicles. However, at the current level, there are limitations and issues that arise, such as insufficient power output and reduced driving speed. As a results, the importance of thermal energy management has been increasing along with the increase in required power. Traditional cooling performance enhancement methods have mainly focused on developing increased hardware specifications, but even this approach has reached its limitation due to package, cost and weight problem. Therefore, it is essential to develop a new cooling system to solve the increases in heat dissipation.
Technical Paper

Analysis of Aerodynamic Characteristics of Fan-Type Wheels

2024-04-09
2024-01-2540
This research addresses the pressing need for reducing vehicle aerodynamic resistance, with a specific focus on mitigating wheel and tire resistance, which constitutes approximately 25% of the overall vehicle drag. While the prevailing method for reducing resistance in mass production development involves wheel opening reduction, it inadvertently increases wheel weight and has adverse effects on brake cooling performance. To overcome these challenges, novel complementary resistance reduction methods that can be employed in conjunction with an appropriate degree of wheel opening reduction are imperative. In this study, we introduce symmetrical wheels with a fan-like shape as a solution. The fan configuration influences the surrounding flow by either drawing it in or pushing it out, depending on the direction of rotation. Application of these fan-type wheels to a vehicle's wheels results in the redirection of flow inwards or outwards during high-speed driving due to wheel rotation.
Technical Paper

A Study on the Improvement of Driver's Inconvenience to Ensure Driving Stability in Bad Weather Conditions

2023-04-11
2023-01-0651
Bad weather conditions such as torrential rain, heavy snow, and thick fog frequently occur worldwide. Vehicle accidents in such bad weather conditions account for a significant portion of all vehicle accidents, and the level of damage is relatively severe compared to other accidents that occur in clear weather. This paper analyzes the driver's driving stability in bad weather conditions, which has such a significant meaning, in various ways through experiments on the inconvenience experienced by the driver. In this study, three levels of bad weather conditions were implemented in a driving simulator environment to evaluate driver inconvenience for six activities. Through driving experiment, quantitative bio-signals and vehicle signals were analyzed in each weather condition. The SD survey was used to assess the driver's inconvenience level for activities performed while driving and analyze the ranking of inconvenience.
Technical Paper

Brake Pad Wear Monitor using MOC (Motor on Caliper) EPB ECU

2022-09-19
2022-01-1167
With the spread of new trends such as autonomous driving and vehicle subscription service, drivers may pay less attention to the maintenance of the vehicle. Brake pads being safety critical components, the wear condition of all service brakes is required by regulation to be indicated by either acoustic of optical devices or a means of visually checking the degree of brake lining wear [1]. Current application of the wear indicator in the market uses either sound generating metal strip or wire harness based pad wear sensor. The former is not effective in generating clear alarm to the driver, and the latter is not cost effective, and there is a need for more effective and low cost solution. In this paper, a pad wear monitoring system using MOC(Motor On Caliper) EPB(Electric Parking Brake) ECU is proposed. An MOC EPB is equipped with a motor, geartrain and an ECU. The motor current when applying the parking brake is influenced by the mechanical load at the brake pad side of the system.
Technical Paper

A Trend Line Analysis of the Insertion Loss Test Data and Application to Sound Transmission Loss Simulation

2022-06-15
2022-01-0959
In this paper, an application process is studied at which the insertion loss (IL) test data of sound insulating parts or noise control treatments are utilized for the sound transmission loss (STL) simulation of the trimmed dash structure. The considered sound barrier assemblies were composed of a felt layer, a mass layer, and a decoupler layer. Flat samples of sound barrier assemblies with several different thicknesses were prepared, and ILs of them were measured by using a sound transmission loss facility. Flat samples were assumed to have mass-spring-mass resonance frequencies. The mass was set as the area mass of the sound barrier layer of the felt layer and the mass layer. The spring constant of the decoupler layer was assumed as the multiplication of that of an air spring and a spring correction factor.
Technical Paper

Prediction and Optimization of Blocked Force Changes of a Suspension System Using Bush Stiffness Injection Method

2022-06-15
2022-01-0956
Automotive OEMs have introduced a new development paradigm, modular architecture development, to improve diversity quality and production efficiency. It needs solid fundamentals of system-based performance evaluation and development for each system level and single component level. When it comes to NVH development, it is challenging to realize the modular concept because noise and vibration should be transferred through various transfer path consisting of many parts and systems, which interact with each other. It is challenging for a single system of interest to be evaluated independently of the adjacent parts and environments. In this study, a new system-based development process for a vehicle suspension was investigated by applying blocked force theory and FRF-based dynamic substructuring. The objective is to determine the better dynamic stiffness distribution of many bushes installed in a suspension system in the frequency range corresponding to road noise.
Journal Article

High-Bandwidth Mechanical Hardware-In-The-Loop Emulation of Structural Dynamics for More Efficient NVH Development and Testing

2022-06-15
2022-01-0953
Numerical simulations offer a wide range of benefits. Therefore, they are widely used in research and development. One of the biggest benefits is the possibility of automated parameter variation. This allows testing different scenarios very quickly. Nevertheless, physical experiments in the laboratory or on a test rig are still, and will remain, necessary. Physical experiments offer benefits, e.g., for very complex and/or nonlinear systems and are required for the validation of numerical models. To enhance the quality of experimental NVH investigations and to make use of the benefits of numerical simulation during experimental investigations at the same time, numerical models can be integrated into physical test rigs using the mechanical hardware-in-the-loop (mHIL) method (also referred to as real-time dynamic substructuring, hybrid testing or active control of impedance).
Technical Paper

Development of the Frontal Crash Performance of Vehicle by Simplified Crash Model

2022-03-29
2022-01-0871
This study presents a design methodology to predict the crash behavior of mid-size sedan with a simplified crash model. Without detailed conventional finite element, the simplified crash model can be adopted in the early stage of the vehicle design. Designing vehicle structure to satisfy crash performance target is highly complex problem in the early design stage, because of the nonlinear mechanical behavior, high number of degrees-of-freedom, lack of information and boundary conditions changing over the following development process. In this study, the front structure of the vehicle is divided into load-carrying members and the rigid element through the analysis of load-carrying mechanism, and its physical property (force-displacement relation) is parameterized as the property of the non-linear discrete beam element of the LS-DYNA. The effectiveness of the proposed research is shown by the example of the mid-size sedan.
Technical Paper

Development of a Built-In Type Dashboard Camera with Reliability and Usability

2022-03-29
2022-01-0111
Dashcam, which is considered essential parts of vehicles in Korea, are installed in most vehicles for proofs of accidents or threatened driving of other vehicles, and insurance premiums. Also global market is growing continuously. Aftermarket dashcams have been developed with many improvements such as higher resolution camera and a LCD, however still have technical limitations in usability and durability. The First limitation is that the dashcam which mounted on windshield can be separated and injure at an accident due to a collision impact, and the device obstructs the driver's vision. In addition, the connection of the power supply may cause a vehicle damages such as a fire due to a worker's mistake or a product defect. Secondly, in order to replay the recorded video, it is not easy to remove the SD card and check it on the computer. Moreover, since the LCD is so small, it is difficult to search and replay the wanted video from the list in many files.
Technical Paper

A Research on Autonomous Vehicle Control in Track Beyond Its Limits of Handling

2021-04-06
2021-01-0977
This paper presents the research related to the self-driving system that has been actively carried out recently. Previous studies have been limited to ensure the path following performance in linear and steady state-alike handling region with small lateral acceleration. However, in the high speed driving, the vehicle cornering response is extended to nonlinear region where tire grips are saturated. This requires a technology to create the driving path for minimum time maneuvering while grasping the tire grip limits of the vehicle in real time. The entire controller consists of three stages-hierarchy: The target motion is determined in the supervisor phase, and the target force to follow the target behavior is calculated in the upper stage controller. Finally, the lower stage controller calculates the actuator phase control input corresponding to the target force.
Journal Article

On the Aerodynamics of the Notchback Open Cooling DrivAer: A Detailed Investigation of Wind Tunnel Data for Improved Correlation and Reference

2021-04-06
2021-01-0958
Since the introduction of the DrivAer in 2012 this model has become the standard generic aerodynamic benchmark and aerodynamic research model used by automotive OEMs, software vendors and researchers. In 2017, the relevance of the DrivAer has been furthered by the inclusion of a simplified engine bay. Whilst the DrivAer has become the popular standard, the availability of detailed wind tunnel test data, a key enabler for more sophisticated aerodynamic benchmarking and research, remains limited. This paper presents a comprehensive set of wind tunnel test data of the notchback version of the Ford Open Cooling DrivAer, including aerodynamic force measurements, detailed surface pressure measurements and flow field measurements at 3 cross-sections in the vicinity of the model. In addition, the paper will discuss the sensitivity of the experimental data to wind tunnel repeatability and facility-to-facility variations.
Journal Article

Reinforcement of Low-Frequency Sound by Using a Panel Speaker Attached to the Roof Panel of a Passenger Car

2020-09-30
2020-01-1570
The woofer in a car should be large to cover the low frequencies, so it is heavy and needs an ample space to be installed in a passenger car. The geometry of the woofer should conform to the limited available space and layout in general. In many cases, the passengers feel that the low-frequency contents are not satisfactory although the speaker specification covers the low frequencies. In this work, a thin panel is installed between the roof liner and the roof panel, and it is used as the woofer. The vibration field is controlled by many small actuators to create the speaker and baffle zones to avoid the sound distortion due to the modal interaction. The generation of speaker and baffle zones follows the inverse vibro-acoustic rendering technique. In the actual implementation, a thin acrylic plate of 0.53x0.2 m2 is used as the radiator panel, and the control actuator array is composed of 16 moving-coil actuators.
Technical Paper

Development of the Rig and Hardware-in-the-Loop Test Bench for Evaluating Steering Performance

2020-04-14
2020-01-0647
The development of vehicles faces changes in many future flows. The vehicle’s power transfer systems are being changed from conventional types to Hybrid, Electric and Hydrogen vehicles. At this moment, the technology of EPS (Electric Power Steering) system has been expanding from a simple torque assist system to LKAS(Lane Keeping Assist System), PAP(Park Assist Pilot), ALCAS(Active Lane Change System), ADAS(Advanced Driver Assistance System). A good test bench is necessary for the evaluation of both hardware and control logics of EPS in these complexities of development process. Simultaneous Rig and HILS tests can be performed to check that the steering hardware system can perform to the concept of the development vehicle and develop EPS control logic performances. The hardware performance of the steering system might be evaluated based on measured friction and stiffness, taking into account various driving conditions.
Technical Paper

The Effects of Suspension Component Stiffness on the Road Noise: A Sensitivity Study and Optimization

2018-06-13
2018-01-1510
This paper investigates the sensitivity of stiffness of front and rear suspension systems on the structure-borne road noise inside a vehicle cabin. A flexible multi-body dynamics based approach is used to simulate the structural dynamics of suspension systems including rubber bushings, suspension arms, a subframe and a twist beam. This approach can accurately predict the force transfer to the trimmed body at each suspension mounting point up to a frequency range of 0 to 300 Hz, which is validated against a force measurement test using a suspension test rig. Predicted forces at each mounting point are converted to road noise inside the cabin by multiplying it with experimentally obtained noise transfer functions. All of the suspension components are modeled as flexible bodies using Craig-Bampton component mode synthesis method.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Validating Prototype Connected Vehicle-to-Infrastructure Safety Applications in Real- World Settings

2018-04-03
2018-01-0025
This paper summarizes the validation of prototype vehicle-to-infrastructure (V2I) safety applications based on Dedicated Short Range Communications (DSRC) in the United States under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). After consideration of a number of V2I safety applications, Red Light Violation Warning (RLVW), Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure Warning (RSZW/LC) were developed, validated and demonstrated using seven different vehicles (six passenger vehicles and one Class 8 truck) leveraging DSRC-based messages from a Road Side Unit (RSU). The developed V2I safety applications were validated for more than 20 distinct scenarios and over 100 test runs using both light- and heavy-duty vehicles over a period of seven months. Subsequently, additional on-road testing of CSW on public roads and RSZW/LC in live work zones were conducted in Southeast Michigan.
Technical Paper

Development of Crash Performance of the Front Bumper System by Adopting Target Cascading Scheme

2018-04-03
2018-01-1054
A practical application of the Target Cascading scheme for the development of the front bumper system of a passenger car is investigated in this paper. The Target cascading in the crash performance of vehicle developments requires a systematic approach, propagating from the desired vehicle-level performance target to appropriate specifications in a system- and/or component-level. To define the values of design specification in the front bumper system, three physical variables are derived by analyzing the vehicle-level performance of the frontal impact under the high-speed (56kph NCAP frontal impact) and the low-speed (15kph RCAR structural test) crash conditions. To ensure the sequential deformation in the high-speed frontal impact and to minimize the damage of the structural member in the low-speed crash, the maximum collapse load of a crash box should be smaller than the collapse load of a front side member.
Technical Paper

Improvement of Tire Development Process Through Study of Tire Test Procedure and Vehicle Correlation

2018-04-03
2018-01-1337
The tire is the vital element in vehicle dynamics, as its contact patch transmits all forces and moments to the ground (accelerating, braking, cornering, rolling).Over the recent decades tire development for passenger cars has been continuously improved and optimized in order to achieve a good overall vehicle performance in R&H that is in balance with all other tire performances (Wear, Durability, NVH, RR, Miles). This general development process has to be suitable for various vehicle types from regular passenger cars over eco-friendly hybrid or electric vehicles to high performance sport cars. The balance between Ride and Handling performance is further adjusted to local customer preferences that are usually distinguished by markets (US, EU, Asia). The tire development process, which is embedded in the overall vehicle development, is usually realized in a mutual collaboration between OEM and tire supplier.
X