Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of an Automated CAD Database and Application on Aluminum Wheel

2024-04-09
2024-01-2724
As data science technologies are being widely applied on various industries, the importance of data itself increased. A typical manufacturer company has a vast data set of products as 2D&3D drawing formats, but a common problem was that building a database from the 2D&3D drawings costs much, and it is hard to update the database after it once built. Also, it is high-cost job when the new factor researched and necessary to investigate the new factors on previously fixed or uploaded drawings. As new products are developed with time, these problems are getting more difficult. In this paper, an automated database building method using CATIA introduced and future probabilities are suggested. An aluminum wheel part was used as an example. An automated logic used CATIA V5’s VBA functions and was handled by python programming language.
Technical Paper

Analysis of Aerodynamic Characteristics of Fan-Type Wheels

2024-04-09
2024-01-2540
This research addresses the pressing need for reducing vehicle aerodynamic resistance, with a specific focus on mitigating wheel and tire resistance, which constitutes approximately 25% of the overall vehicle drag. While the prevailing method for reducing resistance in mass production development involves wheel opening reduction, it inadvertently increases wheel weight and has adverse effects on brake cooling performance. To overcome these challenges, novel complementary resistance reduction methods that can be employed in conjunction with an appropriate degree of wheel opening reduction are imperative. In this study, we introduce symmetrical wheels with a fan-like shape as a solution. The fan configuration influences the surrounding flow by either drawing it in or pushing it out, depending on the direction of rotation. Application of these fan-type wheels to a vehicle's wheels results in the redirection of flow inwards or outwards during high-speed driving due to wheel rotation.
Technical Paper

Progressive Meta-Model Based Design Optimization for Lithium-ion Battery Pack to Improve Cell Cycle Life

2023-04-11
2023-01-0512
Lithium-ion battery has advantages of high energy density and cost effectiveness than other types of batteries. However due to the low mechanical stability, their performance is strongly influenced by environmental conditions. Especially, external pressure on a cell surface is a crucial factor because an appropriate force can improve battery cycle life, but excessive force may cause structural failure. In addition, battery pack is composed of various components so that uncertainties in dimension and material properties of each component can cause a wide variance in initial pressure. Therefore, it is important to optimize structural design of battery pack to ensure initial pressure in an effective range. In this paper, target stiffness of module structure was determined based on cell level cycle life test, then structural design has been optimized for weight reduction. Cell cycling tests were performed under different stiffness conditions and analyzed with regression model.
Technical Paper

Full Aluminum Body Design Considering Part-Specific Requirements

2023-04-11
2023-01-0603
In the era of electric vehicles(EVs), the need for weight reduction of the vehicle body is increasing in order to maximize the driving distance of the EV. Accordingly, there is an increasing need for research to efficiently apply lightweight materials, such as aluminum and CFRP, to the EV body parts. In this study, design methodologies and optimization measures to increase lightweight efficiency when applying lightweight materials to EVs will be discussed. Based on theoretical basis and basic performance of each part of the EV, the “Material Substitution Method” of replacing existing parts of a steel body with aluminum materials will be defined, and the optimal design process on how to overcome performance trade-off caused by material characteristics will be addressed. In applying the “Material Substitution Method” to the actual EV body design process, it was possible to convert 93% of the components from steel to aluminum and reduce the overall weight of the body by 23%.
Journal Article

A Study on Flexible Transparent Electrode Materials for Touch Sensor

2023-04-11
2023-01-0074
As the AVN display in the car interior becomes larger and located above the center fascia, the driver's visual visibility is becoming important. In addition, since an expensive touch sensor is installed, a transparent electrode cost reduction technology for a display touch sensor that can replace an indium material, which is an expensive rare metal, is required. In this paper, we developed new transparent electrode materials and manufacturing methods for the touch sensor film which light reflectance is low and flexible without a separate low-reflection multi-layer, so that the design freedom is high and the material cost is low. By optimizing the amount of fluorine doping ratio in tin oxide, excellent electrical conductivity and high optical transmittance are secured, and the surface reflectance is reduced by adjusting the diameter and length of the silver nanowire. As a result, it was shown that the AVN display image and font readability was improved.
Technical Paper

Study on Selective Electroplating for Pattern/Lighting on Plastic

2021-04-06
2021-01-0367
For making metal touch feeling and lighting simultaneously, selective electroplating is widely applied in button, panel and etc. in interior/exterior parts of automotive. In this paper, new selective electroplating with printing are suggested as an alternative manufacturing process of two shot molding, PC (Polycarbonate) and ABS (Acrylonitrile-Butadiene-Styrene). Manufacturing process of selective electroplating with printing is as follows: For preventing to plate metal layer in area of letter or symbol, masking ink is printed on parts, button, panel, etc., with electroplatable PC+ABS. After conventional electroplating process, the part has electroplated metal layer except for the printed area. It had been studied the composition of ink and PC+ABS for obtaining skip plating and light transmittance on printed area.
Journal Article

On the Aerodynamics of the Notchback Open Cooling DrivAer: A Detailed Investigation of Wind Tunnel Data for Improved Correlation and Reference

2021-04-06
2021-01-0958
Since the introduction of the DrivAer in 2012 this model has become the standard generic aerodynamic benchmark and aerodynamic research model used by automotive OEMs, software vendors and researchers. In 2017, the relevance of the DrivAer has been furthered by the inclusion of a simplified engine bay. Whilst the DrivAer has become the popular standard, the availability of detailed wind tunnel test data, a key enabler for more sophisticated aerodynamic benchmarking and research, remains limited. This paper presents a comprehensive set of wind tunnel test data of the notchback version of the Ford Open Cooling DrivAer, including aerodynamic force measurements, detailed surface pressure measurements and flow field measurements at 3 cross-sections in the vicinity of the model. In addition, the paper will discuss the sensitivity of the experimental data to wind tunnel repeatability and facility-to-facility variations.
Technical Paper

A Development of Fuel Saving Driving Technique for Parallel HEV

2018-04-03
2018-01-1006
This paper examines the effect of pulse-and-glide (PnG) driving strategies on the fuel efficiency when applied on parallel HEVs. Several PnG strategies are proposed, and these include the electrical, mechanical, and combined PnG strategies. The electrical PnG strategy denotes the hybrid powertrain control tactics in which the battery is charged or discharged according to the power demanded while maintaining the constant vehicle speed. On the other hand, the mechanical PnG strategy denotes the powertrain control tactics in which the vehicle accelerates or decelerates according to the power load while minimizing the battery usage. The combined PnG strategy involves both electrical and mechanical strategies to find a balanced point in between them. Here, a tradeoff relationship between the fuel efficiency and the vehicle drivability related to the tracking performance of the desired target speed is revealed.
Technical Paper

Development of Parallel and Direct Cooling System for EV/FCEV Inverter

2018-04-03
2018-01-0454
This paper presents the direct liquid-cooled power module with the circular pin fin which is the inverter parallel cooling system for high output EV/FCEV. The direct cooling system of a conventional inverter is designed to supply coolant along the direction in which the heating element such as Si-chip is disposed and discharge coolant to the opposite side. In case of the inverter, the higher the output is, the larger temperature difference between inlet and outlet becomes due to the heat exchange of the heat generation element, so that temperature difference depends on the position of Si-chip. Since lifetime is judged on the basis of maximum temperature of Si-chip, the inverter itself must be replaced or discarded due to durability of the inverter even though Si-chip can drive further. The simple way to solve this problem is to increase cooling flow rate, but this leads to excessive increase in pressure loss due to circular pin fin.
Technical Paper

Development of Aluminum Suspension Part using by High Pressure Casting of Electro-Magnetic Stirring

2018-04-03
2018-01-1394
The weight reduction of the car suspension parts has a direct influence on the ride and handling. However, the application of nonferrous metal materials, such as aluminum and magnesium, which results in a lighter weight of the suspension can lead to an increase in manufacturing costs compared to cast iron. In this study, vertical type high-pressure die casting using by electro-magnetic stirring (EMS) with A356 alloy in the sleeve was used to control the fine microstructure. Process optimization and part development, as well as unit product and automotive assessment were carried out for electro-magnetic stirring methods. Without making the slurry, the mechanical properties were obtained through optimization of process variables UTS 320MPa, YS 239MPa, EL 13.3%. It also succeeded in mass production with minimum cost increase of aluminum suspension components.
Journal Article

Development of Standardized Battery Pack for Next-Generation PHEVs in Considering the Effect of External Pressure on Lithium-Ion Pouch Cells

2018-04-03
2018-01-0439
The performance and marketability of eco-friendly vehicles highly depend on their high-voltage battery system. Lithium-ion pouch cells have advantages of high energy density and cost-effectiveness than other types of batteries. However, due to their low mechanical stability, their characteristics are strongly influenced by external conditions. Especially, external pressure on pouch cell is a crucial factor for the performance, life cycle, and structural safety of battery pack. Therefore, optimizing pressure level has been a critical consideration in designing battery pack structures for lithium-ion pouch cell. In this work, we developed an optimized structure of the battery module and pack to apply appropriate pressure on pouch cells. They also include a standardization strategy to meet the varied demand in capacity and power for automotive application.
Technical Paper

Optimization for Brake Feeling in Vehicle without Brake Noise

2016-09-18
2016-01-1928
Recently, upon customer’s needs for noise-free brake, carmakers are increasingly widely installing damping kits in their braking systems. However, an installation of the damping kits may excessively increase softness in the brake system, by loosening stroke feeling of a brake pedal and increasing compressibility after durability. To find a solution to alleviate this problem, we first conducted experiments to measure compressibility of shims by varying parameters such as adhesive shims (e.g., bonding spec., steel and rubber thickness), piston’s shapes (e.g., different contact areas to the shims), and the numbers of durability. Next, we installed a brake feeling measurement system extended from a brake pedal to caliper. We then compared experimental parameters with brake feeling in a vehicle. Finally, we obtained an optimized level of brake feeling by utilizing the Design for Six Sigma (DFSS).
Journal Article

A Study on the Impact Resistance of Plastic Underbody Parts

2016-04-05
2016-01-0515
Impact resistance of plastic underbody parts was studied using simulated injection-molded specimen which can be tested according to different types of material used, injection molding variants like position and number of injection molding gates, and features of ribs. Material applied was glass fiber reinforced polyamide which can be used in underbody parts. Test was performed using several combinations of injection molding gates and rib types. From the test result, optimal design guide for plastic underbody parts was determined. Also, new high impact resistant plastic material made of glass fiber reinforced polyamide 66 (PA66) and polyamide 6 (PA6) alloy was developed and the material properties useful for CAE were determined. As a case study, oil pan and muffler housing were designed following the optimal design guide and CAE. And the reliability of the sample muffler housing designed was verified.
Technical Paper

Microstructure and Tribological Behavior of CrN-Cu Nanocoatings Deposited by PVD Systems

2016-04-05
2016-01-0492
The present study focused on CrN-Cu nanocoatings composed of nano-meter grains with CrN, Cr and Cu functioning low-friction, anti-wear and heat resistance. The coatings were synthesized by hybrid PVD including metal arc source, magentron sputter source and ion-gun source. Although Cu has low hardness, the hardness of CrNCu is not declined because it was composed of below 20nm sized grains of CrN, Cr, and Cu. However, CrN-Cu had lower friction than CrN owing to Cu’s low shear strength. CrN-Cu films optimized using the Reaction Surface Method (RSM) showed the excellent tribological behavior and low coefficient of friction compared with DLC. The tribological properties of the Cr-Cu-N demonstrated superior wear resistance and low friction at normal and high temperature conditions. The CrN-Cu nanocoatings can be used for the downsizing automotive engines working at severe tribological conditions.
Journal Article

An Improvement of Brake Squeal CAE Model Considering Dynamic Contact Pressure Distribution

2015-09-27
2015-01-2691
In the brake system, unevenly distributed disc-pad contact pressure not only leads to a falling-off in braking feeling due to uneven wear of brake pads, but also a main cause of system instability which leads to squeal noise. For this reason there have been several attempts to measure contact pressure distribution. However, only static pressure distribution has been measured in order to estimate the actual pressure distribution. In this study a new test method is designed to quantitatively measure dynamic contact pressure distribution between disc and pad in vehicle testing. The characteristics of dynamic contact pressure distribution are analyzed for various driving conditions and pad shape. Based on those results, CAE model was updated and found to be better in detecting propensity of brake squeal.
Technical Paper

Assessing Panel Noise Contribution of a Car Engine Using Particle Velocity Sensors

2015-06-15
2015-01-2248
In order to apply an effective noise reduction treatment determining the contribution of different engine components to the total sound perceived inside the cabin is important. Although accelerometer or laser based vibration tests are usually performed, the sound contributions are not always captured accurately with such approaches. Microphone based methods are strongly influenced by the many reflections and other sound sources inside the engine bay. Recently, it has been shown that engine radiation can be effectively measured using microphones combined with particle velocity sensors while the engine remains mounted in the car [6]. Similar results were obtained as with a dismounted engine in an anechoic room. This paper focusses on the measurement of the transfer path from the engine to the vehicle interior in order to calculate the sound pressure contribution of individual engine sections at the listener's position.
Technical Paper

Development of Si-DLC Coated Tappet for Improved Wear Resistance

2015-04-14
2015-01-0685
Most bucket type valvetrain engines use DLC coated tappet for low friction and fuel efficiency. However the requirements on coating robustness have been increased as the tribological environments have become more severe by use of low viscosity oil or higher engine output. In order to obtain higher coating efficiency and improved wear resistance, 5∼9 at.% Si doped DLC (Si-DLC) coated tappet has been developed using PACVD process. Thermal stability and wear resistance of Si-DLC were improved impressively than those of DLC, although mechanical properties such as hardness and adhesion were degradated. It seems that Si suppresses a graphitization of DLC and thin SixOy film on coating surface acts as a barrier to oxidation or flash heat.
Technical Paper

A BIW Structure Research of Light Weight Vehicle with High Stiffness by Steel

2015-03-10
2015-01-0061
The focus of this paper is to develop an innovative vehicle layout and optimize vehicle body structure with the latest lightweight steel technologies, such as hydro-forming and hot stamping. Our BIW structure achieved a mass savings of 28 kg (−10%) compared to the mass of baseline BIW structure. (Base BIW : MD_Elantra)
Journal Article

Direct Sound Radiation Testing on a Mounted Car Engine

2014-06-30
2014-01-2088
For (benchmark) tests it is not only useful to study the acoustic performance of the whole vehicle, but also to assess separate components such as the engine. Reflections inside the engine bay bias the acoustic radiation estimated with sound pressure based solutions. Consequently, most current methods require dismounting the engine from the car and installing it in an anechoic room to measure the sound emitted. However, this process is laborious and hard to perform. In this paper, two particle velocity based methods are proposed to characterize the sound radiated from an engine while it is still installed in the car. Particle velocity sensors are much less affected by reflections than sound pressure microphones when the measurements are performed near a radiating surface due to the particle velocity's vector nature, intrinsic dependency upon surface displacement and directivity of the sensor. Therefore, the engine does not have to be disassembled, which saves time and money.
Technical Paper

New 1.4ℓ SI Engine Development with the Aluminum Thermal Spray Coated Counter Spiny Thin-Wall Cast Iron Liner

2013-10-14
2013-01-2641
For the lightweight and compact cylinder block, new cast iron liner was developed, which has counter spiny form on the out side of the liner. Additionally, the outer surface was spray-coated with Aluminum in order to enhance the heat conductivity and to increase the grip force between the liner and the block. Without any redesign of cylinder block or crankshaft, the displacement of the engine could be increased from 1.25ℓ to 1.4ℓ by adapting this new liner only. This liner enabled to expand the engine displacement without both great dimension changes and production facility changes.
X