Refine Your Search

Topic

Search Results

Technical Paper

Innovative Virtual Evaluation Process for Outer Panel Stiffness Using Deep Learning Technology

2024-04-09
2024-01-2865
During the vehicle lifecycle, customers are able to directly perceive the outer panel stiffness of vehicles in various environmental conditions. The outer panel stiffness is an important factor for customers to perceive the robustness of the vehicle. In the real test of outer panel stiffness after prototype production, evaluators manually press the outer panel in advance to identify vulnerable areas to be tested and evaluate the performance only in those area. However, when developing the outer panel stiffness performance using FEA (Finite Element Analysis) before releasing the drawing, it is not possible to filter out these areas, so the entire outer panel must be evaluated. This requires a significant amount of computing resources and manpower. In this study, an approach utilizing artificial intelligence was proposed to streamline the outer panel stiffness analysis and improve development reliability.
Technical Paper

Optimization of Structural Rigidity of the Door Module Mounting part

2024-04-09
2024-01-2223
The recent surge in platforms like YouTube has facilitated greater access to information for consumers, and vehicles are no exception, so consumers are increasingly demanding of the quality of their vehicles. By the way, the door is composed of glass, moldings, and other parts that consumers can touch directly, and because it is a moving part, many quality issues arise. In particular, the door panel is assembled from all of the above-mentioned parts and thereby necessitates a robust structure. Therefore, this study focuses on the structural stiffness of the door inner panel module mounting area because the door module is closely to the glass raising and lowering, which is intrinsically linked to various quality issues.
Technical Paper

Development of a Light Weight Luggage Board Using the Sandwich Molding Method

2024-04-09
2024-01-2222
A crucial component utilized in the trunk space is the luggage board. Positioned at the bottom of the trunk, the trunk board separates the vehicle body from the interior and supports for luggage. The luggage board serves multiple functions, including load-bearing stiffness for luggage, partition structure functionality, noise insulation, and thermal insulation. There is a need for a competitive new luggage board manufacturing method to meet the increasing demand for luggage boards in response to the changing market environment. To address this, the "integrated sandwich molding method" is required. The integrated sandwich molding method utilizes three key methodologies: grouping processes to integrate similar functions, analyzing materials to replace them with suitable alternatives, and overcoming any lacking functionality through integrated design structures. This paper presents a methodology for developing the integrated sandwich molding method.
Technical Paper

A Study on Reliability-Based Maximum Service Temperature Estimation of Plastic Automotive Parts

2024-04-09
2024-01-2421
Recently, the environmental temperature of vehicles is changing due to the electrification of vehicles and improved internal combustion engine system to reduce carbon emissions. However, mechanical properties of plastic materials change very sensitively to environmental temperature changes, and mechanical properties decrease when exposed to high temperatures. Therefore, it is important to estimate lifespan estimation of plastic parts according to temperature changes. In this paper, reliability analysis process to estimate the maximum service temperature of plastic parts was developed using aging data of material properties, environmental condition data of automotive parts, and field driving condition data. Changes in the mechanical properties of plastic materials such as glass fiber reinforced polyamide materials were tested. The environmental exposure temperature of the vehicle and parts was measured, and the general driving pattern of the vehicle was analyzed.
Technical Paper

Development of an Automated CAD Database and Application on Aluminum Wheel

2024-04-09
2024-01-2724
As data science technologies are being widely applied on various industries, the importance of data itself increased. A typical manufacturer company has a vast data set of products as 2D&3D drawing formats, but a common problem was that building a database from the 2D&3D drawings costs much, and it is hard to update the database after it once built. Also, it is high-cost job when the new factor researched and necessary to investigate the new factors on previously fixed or uploaded drawings. As new products are developed with time, these problems are getting more difficult. In this paper, an automated database building method using CATIA introduced and future probabilities are suggested. An aluminum wheel part was used as an example. An automated logic used CATIA V5’s VBA functions and was handled by python programming language.
Technical Paper

Progressive Meta-Model Based Design Optimization for Lithium-ion Battery Pack to Improve Cell Cycle Life

2023-04-11
2023-01-0512
Lithium-ion battery has advantages of high energy density and cost effectiveness than other types of batteries. However due to the low mechanical stability, their performance is strongly influenced by environmental conditions. Especially, external pressure on a cell surface is a crucial factor because an appropriate force can improve battery cycle life, but excessive force may cause structural failure. In addition, battery pack is composed of various components so that uncertainties in dimension and material properties of each component can cause a wide variance in initial pressure. Therefore, it is important to optimize structural design of battery pack to ensure initial pressure in an effective range. In this paper, target stiffness of module structure was determined based on cell level cycle life test, then structural design has been optimized for weight reduction. Cell cycling tests were performed under different stiffness conditions and analyzed with regression model.
Technical Paper

Full Aluminum Body Design Considering Part-Specific Requirements

2023-04-11
2023-01-0603
In the era of electric vehicles(EVs), the need for weight reduction of the vehicle body is increasing in order to maximize the driving distance of the EV. Accordingly, there is an increasing need for research to efficiently apply lightweight materials, such as aluminum and CFRP, to the EV body parts. In this study, design methodologies and optimization measures to increase lightweight efficiency when applying lightweight materials to EVs will be discussed. Based on theoretical basis and basic performance of each part of the EV, the “Material Substitution Method” of replacing existing parts of a steel body with aluminum materials will be defined, and the optimal design process on how to overcome performance trade-off caused by material characteristics will be addressed. In applying the “Material Substitution Method” to the actual EV body design process, it was possible to convert 93% of the components from steel to aluminum and reduce the overall weight of the body by 23%.
Journal Article

A Study on Flexible Transparent Electrode Materials for Touch Sensor

2023-04-11
2023-01-0074
As the AVN display in the car interior becomes larger and located above the center fascia, the driver's visual visibility is becoming important. In addition, since an expensive touch sensor is installed, a transparent electrode cost reduction technology for a display touch sensor that can replace an indium material, which is an expensive rare metal, is required. In this paper, we developed new transparent electrode materials and manufacturing methods for the touch sensor film which light reflectance is low and flexible without a separate low-reflection multi-layer, so that the design freedom is high and the material cost is low. By optimizing the amount of fluorine doping ratio in tin oxide, excellent electrical conductivity and high optical transmittance are secured, and the surface reflectance is reduced by adjusting the diameter and length of the silver nanowire. As a result, it was shown that the AVN display image and font readability was improved.
Technical Paper

Enhancing Meta Model of the Brake Pad Friction Coefficient Using the Explainable Machine Learning

2022-09-19
2022-01-1175
Recently, increasing system complexity and various customer demands result in the need for highly efficient vehicle development processes. Once the brake torque is predicted accurately during the driving scenario in the earlier stage, it will be able to prevent the changing the vehicle or brake system design to satisfy the legal regulation and customer requirement. As brake torque performance target allocate brake pad friction coefficient level and characteristic, the accurate friction coefficient prediction should be preceded for accurate prediction for brake torque. Generally, the friction coefficient of the brake pad is known to vary nonlinearly depending on the physical properties of the disc and the pad, as well as the brake disc rotational speed, the disc temperature, and the hydraulic pressure. Furthermore, it varies depending on the driving scenario even when other conditions are the same. Therefore, it is necessary to apply new methods to solve these challenges.
Technical Paper

Brake Pad Wear Monitor using MOC (Motor on Caliper) EPB ECU

2022-09-19
2022-01-1167
With the spread of new trends such as autonomous driving and vehicle subscription service, drivers may pay less attention to the maintenance of the vehicle. Brake pads being safety critical components, the wear condition of all service brakes is required by regulation to be indicated by either acoustic of optical devices or a means of visually checking the degree of brake lining wear [1]. Current application of the wear indicator in the market uses either sound generating metal strip or wire harness based pad wear sensor. The former is not effective in generating clear alarm to the driver, and the latter is not cost effective, and there is a need for more effective and low cost solution. In this paper, a pad wear monitoring system using MOC(Motor On Caliper) EPB(Electric Parking Brake) ECU is proposed. An MOC EPB is equipped with a motor, geartrain and an ECU. The motor current when applying the parking brake is influenced by the mechanical load at the brake pad side of the system.
Technical Paper

A Trend Line Analysis of the Insertion Loss Test Data and Application to Sound Transmission Loss Simulation

2022-06-15
2022-01-0959
In this paper, an application process is studied at which the insertion loss (IL) test data of sound insulating parts or noise control treatments are utilized for the sound transmission loss (STL) simulation of the trimmed dash structure. The considered sound barrier assemblies were composed of a felt layer, a mass layer, and a decoupler layer. Flat samples of sound barrier assemblies with several different thicknesses were prepared, and ILs of them were measured by using a sound transmission loss facility. Flat samples were assumed to have mass-spring-mass resonance frequencies. The mass was set as the area mass of the sound barrier layer of the felt layer and the mass layer. The spring constant of the decoupler layer was assumed as the multiplication of that of an air spring and a spring correction factor.
Technical Paper

Study on Selective Electroplating for Pattern/Lighting on Plastic

2021-04-06
2021-01-0367
For making metal touch feeling and lighting simultaneously, selective electroplating is widely applied in button, panel and etc. in interior/exterior parts of automotive. In this paper, new selective electroplating with printing are suggested as an alternative manufacturing process of two shot molding, PC (Polycarbonate) and ABS (Acrylonitrile-Butadiene-Styrene). Manufacturing process of selective electroplating with printing is as follows: For preventing to plate metal layer in area of letter or symbol, masking ink is printed on parts, button, panel, etc., with electroplatable PC+ABS. After conventional electroplating process, the part has electroplated metal layer except for the printed area. It had been studied the composition of ink and PC+ABS for obtaining skip plating and light transmittance on printed area.
Technical Paper

Concept Study on Windshield Actuation for Active Control of Wind Noise in a Passenger Car

2020-09-30
2020-01-1535
The windshield is an integral part of almost every modern passenger car. Combined with current developments in the automotive industry such as electrification and the integration of lightweight material systems, the reduction of interior noise caused by stochastic and transient wind excitation is deemed to be an increasing challenge for future NVH measures. Active control systems have proven to be a viable alternative compared to traditional passive NVH measures in different areas. However, for windshield actuation there are neither comparative studies nor actually established actuation concepts available to the automotive industry. This paper illustrates a comparative conceptual study on windshield actuation for the active control of wind noise in a passenger car. Making use of an experimental modal analysis of the windshield installed in a medium-sized vehicle, a reduced order numerical simulation model is derived.
Technical Paper

A Study on the Optimum Reduction of Required Brake Fluid Level for Improvement of the High Speed Continuous Brake Distance

2019-09-15
2019-01-2121
The high speed continuous braking distance assessment is the worst condition for thermal fades. This study was conducted to investigate the relationship between fade characteristic and friction materials & brake fluid amount for improving braking distance. So, we used the dynamometer to measure the friction coefficient, braking distance and required brake fluid amount. Through the measurements, the research was carried out as follows. First of all, we studied the influence of friction coefficient about different shapes (chamfer shape, area of the friction material, number of slots) on the same friction material. Secondly, we knew the effects of braking distance by the shape of the friction material. Through these two studies, the shape of the friction material favorable to the fade characteristics was derived. Finally, we measured the amount of required brake fluid in caliper after 10 consecutive braking cycles through Dynamometer.
Technical Paper

A Development of the Holographic Lighting

2019-04-02
2019-01-0846
A signal lamp performs a function to inform the position and behavior of the vehicle. And it represents a specific design identity of the vehicle or brand identity. Recently it implements the unique three-dimensional effect while using a LED. However, a number of LEDs and complex form of the lens shape have to be applied, so results in the size, weight, cost increase. In this study, the hologram technology that is an exemplary technique for implementing the described three-dimensional image is applied. With a hologram, it is possible to reproduce a complex shape three-dimensional image by using a hologram film. Therefore the number of parts can be reduced. And it is possible to copy the film has a mass production benefits.
Technical Paper

Development of Surfactant-Free Anti-Fogging Coating for Automotive Headlamps

2019-03-25
2019-01-1439
Recently, the design of automotive headlamps has become diversified and complicated according to customer needs. Hence, structural complexity of the headlamps has also increased. Complex structure of the headlamps inevitably causes a disturbance in air circulation. For this reason, inadvertent micro-sized water droplets, called fogging, are condensed on the inner surface of headlamp lens due to temperature difference between the inner and outer lens surfaces. To circumvent fogging inside of the headlamp lens, an anti-fogging coating is indispensable. Conventionally, diverse surfactants have been adopted as substantial material for the anti-fogging coating. However, the usage of the surfactants causes undesirable side effect such as water mark arising from vapor condensation, which is an important issue that must be fully resolved. In this study, we developed an innovative anti-fogging coating material without using conventional surfactant.
Journal Article

Study on Basic Principles of Operation Noise of Wiper System on Vehicle

2019-03-25
2019-01-1421
The wiper system consists of a motor, linkage, arm, and blade, which provides a clear front view to the driver by removing rain, snow, and foreign matter from the windshield glass. It is a system component that requires a robust design to meet system rigidity, scrubbing performance, and operating noise to any external conditions to provide the driver with a front view. In recent years, however, customer complaints about wiper noise have increased as automobile engine and noise levels have decreased. Based on the analysis of wiper noise, this paper presents quantitative judgment criteria for various wiper noises. In addition, we predict the change of wiper noise to environmental factors through the sound field analysis and propose the solution.
Technical Paper

The Effects of Suspension Component Stiffness on the Road Noise: A Sensitivity Study and Optimization

2018-06-13
2018-01-1510
This paper investigates the sensitivity of stiffness of front and rear suspension systems on the structure-borne road noise inside a vehicle cabin. A flexible multi-body dynamics based approach is used to simulate the structural dynamics of suspension systems including rubber bushings, suspension arms, a subframe and a twist beam. This approach can accurately predict the force transfer to the trimmed body at each suspension mounting point up to a frequency range of 0 to 300 Hz, which is validated against a force measurement test using a suspension test rig. Predicted forces at each mounting point are converted to road noise inside the cabin by multiplying it with experimentally obtained noise transfer functions. All of the suspension components are modeled as flexible bodies using Craig-Bampton component mode synthesis method.
Technical Paper

Development New Organic Composite Materials with Excellent Long-Term High-Temperature Durability and Reliability for Automotive Parts

2018-04-03
2018-01-0151
In recent years, the emerging technology competitions in automotive industry are improving engine efficiency and electronizing for coping with stringent fuel-economy regulations. However, fuel-economy technologies such as engine down-sizing and numerous electronic parts entrust burden plastic materials acing as mainly electric insulation and housing to have to be higher performance, especially temperature endurance. Engineering plastics (EPs) have critical limitations in terms of degradation by heat. Heat-resisting additives in EP are generally used to be anti-degradation as activating non-radical decomposition of peroxide. However, it could not be effective way to impede the degradation in long term heat aging over 1,000 hours at high temperature above 180 °C. In this study, we suggested the new solution called ‘shield effect’ that is purposeful oxidation at the surface and local crystallization of EP to stop prevent penetrating oxygen to inside of that.
Technical Paper

Development of a Pre-Validation Mode for Cooling Module by Test and CAE

2018-04-03
2018-01-0466
In case of cooling module rotated by belt, many sources (vehicle’s vibration, belt’s tension and thrust force by rotated fan) are acting on it. Because it is not easy to analyze them individually, there were no rig test modes for pre-validation while developing a new vehicle. In this study, we correlated the strain gauges signal to belt’s tension and fan’s thrust force, and measured acceleration of a vehicle and cooling module by driving a vehicle on the several test roads. In that case of measured acceleration data, we could analyze it by using PDF and construct the representative rig test modes considering vibrational fatigue characteristics by using the FDS. These modes can be utilized while developing a new vehicle without measuring anymore. Also, we could understand each load’s characteristics. It is confirmed that the factors affecting the fatigue were not only the vehicle’s vibration but also the belt’s installation tension.
X