Refine Your Search

Topic

Author

Search Results

Technical Paper

Innovative Virtual Evaluation Process for Outer Panel Stiffness Using Deep Learning Technology

2024-04-09
2024-01-2865
During the vehicle lifecycle, customers are able to directly perceive the outer panel stiffness of vehicles in various environmental conditions. The outer panel stiffness is an important factor for customers to perceive the robustness of the vehicle. In the real test of outer panel stiffness after prototype production, evaluators manually press the outer panel in advance to identify vulnerable areas to be tested and evaluate the performance only in those area. However, when developing the outer panel stiffness performance using FEA (Finite Element Analysis) before releasing the drawing, it is not possible to filter out these areas, so the entire outer panel must be evaluated. This requires a significant amount of computing resources and manpower. In this study, an approach utilizing artificial intelligence was proposed to streamline the outer panel stiffness analysis and improve development reliability.
Technical Paper

Development of a Light Weight Luggage Board Using the Sandwich Molding Method

2024-04-09
2024-01-2222
A crucial component utilized in the trunk space is the luggage board. Positioned at the bottom of the trunk, the trunk board separates the vehicle body from the interior and supports for luggage. The luggage board serves multiple functions, including load-bearing stiffness for luggage, partition structure functionality, noise insulation, and thermal insulation. There is a need for a competitive new luggage board manufacturing method to meet the increasing demand for luggage boards in response to the changing market environment. To address this, the "integrated sandwich molding method" is required. The integrated sandwich molding method utilizes three key methodologies: grouping processes to integrate similar functions, analyzing materials to replace them with suitable alternatives, and overcoming any lacking functionality through integrated design structures. This paper presents a methodology for developing the integrated sandwich molding method.
Journal Article

A Study on Flexible Transparent Electrode Materials for Touch Sensor

2023-04-11
2023-01-0074
As the AVN display in the car interior becomes larger and located above the center fascia, the driver's visual visibility is becoming important. In addition, since an expensive touch sensor is installed, a transparent electrode cost reduction technology for a display touch sensor that can replace an indium material, which is an expensive rare metal, is required. In this paper, we developed new transparent electrode materials and manufacturing methods for the touch sensor film which light reflectance is low and flexible without a separate low-reflection multi-layer, so that the design freedom is high and the material cost is low. By optimizing the amount of fluorine doping ratio in tin oxide, excellent electrical conductivity and high optical transmittance are secured, and the surface reflectance is reduced by adjusting the diameter and length of the silver nanowire. As a result, it was shown that the AVN display image and font readability was improved.
Technical Paper

Study on Selective Electroplating for Pattern/Lighting on Plastic

2021-04-06
2021-01-0367
For making metal touch feeling and lighting simultaneously, selective electroplating is widely applied in button, panel and etc. in interior/exterior parts of automotive. In this paper, new selective electroplating with printing are suggested as an alternative manufacturing process of two shot molding, PC (Polycarbonate) and ABS (Acrylonitrile-Butadiene-Styrene). Manufacturing process of selective electroplating with printing is as follows: For preventing to plate metal layer in area of letter or symbol, masking ink is printed on parts, button, panel, etc., with electroplatable PC+ABS. After conventional electroplating process, the part has electroplated metal layer except for the printed area. It had been studied the composition of ink and PC+ABS for obtaining skip plating and light transmittance on printed area.
Journal Article

A Study of the Disc Scoring Generation Principle and Reduction(III)

2019-09-15
2019-01-2112
In the latest works [12], we presented the guideline for reducing Metal pick up(MPU, the main component of disc scoring) by controlling the location of the roughness of disc, the brake pad friction coefficients and the disc slot's size. In this study, the previously studied iron transfer theory to 'Cu free' brake pad and the disc surface roughness controlling methods which are based on the mass production manufacturing process are applied. It is possible to suggest the ways to improve the scoring-free disc without reducing friction coefficient between the disc and pad, and any demerit such as increased wear and airplane noise like conventional slot discs [11].
Technical Paper

A Development of the Holographic Lighting

2019-04-02
2019-01-0846
A signal lamp performs a function to inform the position and behavior of the vehicle. And it represents a specific design identity of the vehicle or brand identity. Recently it implements the unique three-dimensional effect while using a LED. However, a number of LEDs and complex form of the lens shape have to be applied, so results in the size, weight, cost increase. In this study, the hologram technology that is an exemplary technique for implementing the described three-dimensional image is applied. With a hologram, it is possible to reproduce a complex shape three-dimensional image by using a hologram film. Therefore the number of parts can be reduced. And it is possible to copy the film has a mass production benefits.
Technical Paper

A Study of Design Methodology to Develop Improved Door System of a Vehicle

2019-04-02
2019-01-0616
In the past few years, technological innovations in the automobile industry took vehicle performance to the next level. One such innovation is frame integrated panel door. This type of door helps automobile companies to have the advantages of both conventional panel and frame type doors. Though it has a good number of advantages, there are some drawbacks too. It requires improvements in its quality, NVH performance, weight and etc. Quality of a door is low due to the limitations in structural design and manufacturing technologies. And it is difficult to have a robust structure which leads to degradation of key performing factors such as NVH. For a lightweight vehicle, it is important to design an optimized structure for saving weight, without compromising its performance. In order to overcome these drawbacks a new optimized design structure is required for door system.
Technical Paper

Development of Ultra-Stable Cu-SCR Aftertreatment System for Advanced Lean NOx Control

2019-04-02
2019-01-0743
The integration of SCR catalyst into diesel-particulate filter (SDPF) may be one of most viable ways to meet upcoming stringent emission regulations with new test protocols such as Worldwide harmonized Light vehicles Test Cycles (WLTC) and Real Driving Emissions (RDE) requirements. The chabazite-structured SSZ-13-based catalysts enabled the wide implementation of urea-SCR technology for mobile applications due to their robust thermal stability up to 750°C compared to the thermally unstable ZSM-5-based technologies. However, the thermally stable Cu-SSZ-13 catalyst starts losing its initial activity with the increase of aging time at 850°C, where the SCR catalyst on SDPF can possibly be exposed during filter regeneration under a drop-to-idle (DTI) condition. Therefore, more durable SCR catalysts that survive under higher temperatures have been strongly desired in automotive industry. Recently, we found Cu-exchanged high silica LTA revealed an excellent hydrothermal stability.
Technical Paper

The Development of a NOx Reduction System during the Fuel Cut Period for Gasoline Vehicles

2019-04-02
2019-01-1292
Generally, vehicles do not need power during deceleration. Therefore, the fuel efficiency can be improved by stopping the fuel injection in this period. However, when the fuel cut is activated, NOx is emitted immediately after fuel cut. During the fuel cut period, a large amount of fresh air flows into the catalytic converter installed on a vehicle since there is no combustion. Thus, the catalytic materials are converted into an oxidizing atmosphere. As a result, NOx purification performance of the catalyst deteriorates, and eventually NOx is emitted when combustion restarts. The quantity of NOx in this period is relatively small. However, in case of increasing fuel cuts, emission problem could arise. Therefore, in order to meet the stringent regulation such as LEV III-SULEV20 or 30, the number of fuel cuts need to be limited. The problem is that this strategy leads to a disadvantage of fuel efficiency.
Technical Paper

Effects of Bore-to-Stroke Ratio on the Efficiency and Knock Characteristics in a Single-Cylinder GDI Engine

2019-04-02
2019-01-1138
As a result of stringent global regulations on fuel economy and CO2 emissions, the development of high-efficiency SI engines is more urgent now than ever before. Along with advanced techniques in friction reduction, many researchers endeavor to decrease the B/S (bore-to-stroke) ratio from 1.0 (square) to a certain value, which is expected to reduce the heat loss and enhance the burning rate of SI engines. In this study, the effects of B/S ratios were investigated in aspects of efficiency and knock characteristics using a single-cylinder LIVC (late intake valve closing) GDI (gasoline direct injection) engine. Three B/S ratios (0.68, 0.83 and 1.00) were tested under the same mechanical compression ratio of 12:1 and the same displacement volume of 0.5 L. The head tumble ratio was maintained at the same level to solely investigate the effects of geometrical changes caused by variations in the B/S ratio.
Technical Paper

Development of Surfactant-Free Anti-Fogging Coating for Automotive Headlamps

2019-03-25
2019-01-1439
Recently, the design of automotive headlamps has become diversified and complicated according to customer needs. Hence, structural complexity of the headlamps has also increased. Complex structure of the headlamps inevitably causes a disturbance in air circulation. For this reason, inadvertent micro-sized water droplets, called fogging, are condensed on the inner surface of headlamp lens due to temperature difference between the inner and outer lens surfaces. To circumvent fogging inside of the headlamp lens, an anti-fogging coating is indispensable. Conventionally, diverse surfactants have been adopted as substantial material for the anti-fogging coating. However, the usage of the surfactants causes undesirable side effect such as water mark arising from vapor condensation, which is an important issue that must be fully resolved. In this study, we developed an innovative anti-fogging coating material without using conventional surfactant.
Technical Paper

Smart Engine Control Strategy for the Fuel Efficiency Improvement via Understanding the Unique Behavior of TWC

2019-03-25
2019-01-1406
The worldwide fuel economy compliance level has been tightening, at the same time, LEV-III/Euro-6d/China-6/BS-6 regulations for NMOG and NOx emissions are being introduced or already effective. Therefore, intensive research effort has been conducted in order to improve the fuel efficiency of passenger cars and reduce exhaust emission. In response to these demands, turbocharged gasoline direct injection (TGDI) engine is being introduced for gasoline vehicles in consideration of fuel efficiency improvement, high output and driving performance compared to naturally aspirated (NA) engine. However, due to its larger thermal mass from the turbo hardware in the exhaust, it suffers from the cold-start emission. The main hazardous gases emitted from gasoline vehicles are CO, HC and NOx, and a three-way catalyst (TWC) is installed for the purification of these harmful emissions.
Technical Paper

A Development of Aluminum EGR Cooler for Weight Reduction and Fuel Economy

2018-04-03
2018-01-0102
As environmental problems such as global warming are emerging, regulations on automobile exhaust gas are strengthened and various exhaust gas reduction technologies are being developed in various countries in order to satisfy exhaust emission regulations. Exhaust gas recirculation (EGR) technology is a very effective way to reduce nitrogen oxides (NOx) at high combustion temperatures by using EGR coolers to lower the combustion temperature. This EGR cooler has been mass-produced in stainless steel, but it is expensive and heavy. Recently, high efficiency and compactness are required for the EGR cooler to meet the new emission regulation. If aluminum material is applied to the EGR cooler, heat transfer efficiency and light weight can be improved due to high heat transfer coefficient of aluminum compared to conventional stainless steel, but durability is insufficient. Therefore, the aluminum EGR cooler has been developed to enhance performance and durability.
Technical Paper

Development of Multi-Functioning Lean NOx Trap Catalysts for the On-board NH3 Generation

2018-04-03
2018-01-1430
Improved Lean NOx Trap (LNT) catalysts with enhanced NH3 generation feature were developed for the small diesel engine. The next generation LNT system needs to perform good NOx conversions over the wide temperature range including below 200°C for urban driving and above 400°C for motorway of real road driving. However, the extended use of BaO, a component of LNT known to be very effective for high temperature NOx storage, results in the decrease of low temperature NOx conversion due to the degradation of NO oxidation associating with sulfur over time. The improvement of the low-temperature LNT performance is a key requirement for the real driving emission control as the best operation temperature for urea-SCR is above ~250°C. In this study, our next generation LNT with new washcoat architecture has demonstrated improved NOx removal efficiencies under the wider operation temperature window than the current production technology.
Technical Paper

The CAE Analysis of a Cylinder Head Water Jacket Design for Engine Cooling Optimization

2018-04-03
2018-01-1459
Hyundai's new engine is developed which optimize the cooling efficiency for knocking improvement and friction reduction. The cooling concepts for this purpose are 1) equalizing the temperature among cylinders by flow optimization, 2) cooling the required area intensively, 3) adopting ‘active flow control’ and 4) enlarging fuel economy at high speed range. In order to realize the cooling concept, 1) cross-flow, 2) compact water jacket & exhaust cooling, 3) flow control valve and 4) cylinder head with integrated exhaust manifold are considered. Improvement of knocking and friction reduction by increased cooling water temperature makes fuel efficiency possible. On the other hand, in order to strengthen the cooling around the combustion chamber and to reduce the deviation among the combustion chamber of cylinders, it is required to design the head water jacket shape accordingly.
Technical Paper

Development of High Efficiency Gasoline Engine with Thermal Efficiency over 42%

2017-10-08
2017-01-2229
The maximum thermal efficiency of gasoline engine has been improving and recently the maximum of 40% has been achieved. In this study, the potential of further improvement on engine thermal efficiency over 40% was investigated. The effects of engine parameters on the engine thermal efficiency were evaluated while the optimization of parameters was implemented. Parameters tested in this study were compression ratio, tumble ratio, twin spark configuration, EGR rate, In/Ex cam shaft duration and component friction. Effects of each parameter on fuel consumption reduction were discussed with experimental results. For the engine optimization, compression ratio was found to be 14, at which the best BSFC without knock and combustion phasing retardation near sweet spot area was showed. Highly diluted combustion was applied with high EGR rate up to 35% for the knock mitigation.
Technical Paper

Transient Nonlinear Full-Vehicle Vibration Analysis

2017-03-28
2017-01-1553
This paper presents a transient vibration analysis of a nonlinear full-vehicle. The full-vehicle model consists of a powertrain, a trimmed body, a drive line, and front and rear suspensions with tires. It is driven by combustion forces and runs on a road surface. By performing time-domain simulation, it is possible to capture nonlinear behavior of a vehicle such as preload due to gravitational force, large deformation, and material nonlinearity which cannot be properly treated in the conventional steady state analysis. In constructing a full-vehicle, validation process is essential. Validation process is applied with respect to the assembling sequence. The validation starts with component levels such as tires, springs, shock absorbers, and a powertrain, and then the full-vehicle model is constructed. Model validation is done in two aspects; one is model accuracy and the other is model efficiency.
Journal Article

A Tailgate(Trunk) Control System Based on Acoustic Patterns

2017-03-28
2017-01-1634
When customers use a tailgate (or trunk), some systems such as power tailgate and smart tailgate have been introduced and implemented for improving convenience. However, they still have some problems in some use cases. Some people have to search for the outside button to open the tailgate, or they should take out the key and push a button. In some cases, they should move their leg or wait a few seconds which makes some people feel that it is a long time. In addition, they have to push the small button which is located on the inner trim in order to close the tailgate. This paper proposes a new tailgate control technology and systems based on acoustic patterns in order to solve some inconvenience. An acoustic user interaction (AUI) is a technology which responds to human’s rubbing and tapping on a specific part analyzing the acoustic patterns. The AUI has been recently spotlighted in the automotive industry as well as home appliances, mobile devices, musical instruments, etc.
Journal Article

A Study on the Impact Resistance of Plastic Underbody Parts

2016-04-05
2016-01-0515
Impact resistance of plastic underbody parts was studied using simulated injection-molded specimen which can be tested according to different types of material used, injection molding variants like position and number of injection molding gates, and features of ribs. Material applied was glass fiber reinforced polyamide which can be used in underbody parts. Test was performed using several combinations of injection molding gates and rib types. From the test result, optimal design guide for plastic underbody parts was determined. Also, new high impact resistant plastic material made of glass fiber reinforced polyamide 66 (PA66) and polyamide 6 (PA6) alloy was developed and the material properties useful for CAE were determined. As a case study, oil pan and muffler housing were designed following the optimal design guide and CAE. And the reliability of the sample muffler housing designed was verified.
Technical Paper

Analysis of Microorganism Causing Odor in an Air-Conditioning System

2015-04-14
2015-01-0354
This study has been conducted to analyze microbial diversity and its community by using a method of NGS(Next generation sequencing) technique that is not rely on cultivation for microbial community in an core evaporator causing odor of car air conditioner. The NGS without any cultivation method of cultivation, has been developed recently and widely. This method is able to research a microorganism that has not been cultivated. Differently with others, it can get a result that is closer to fact, also can acquire more base sequence with larger volume in relatively shorter time. According to bacteria population analysis of 23 samples, It can be known limited number of bacteria can inhabit in Evaporator core, due to small exposure between bacteria and evaporate, as well as its environmental characteristics. With the population analysis, only certain group of it is forming biofilm in proportion.
X