Refine Your Search

Topic

Author

Search Results

Technical Paper

Innovative Virtual Evaluation Process for Outer Panel Stiffness Using Deep Learning Technology

2024-04-09
2024-01-2865
During the vehicle lifecycle, customers are able to directly perceive the outer panel stiffness of vehicles in various environmental conditions. The outer panel stiffness is an important factor for customers to perceive the robustness of the vehicle. In the real test of outer panel stiffness after prototype production, evaluators manually press the outer panel in advance to identify vulnerable areas to be tested and evaluate the performance only in those area. However, when developing the outer panel stiffness performance using FEA (Finite Element Analysis) before releasing the drawing, it is not possible to filter out these areas, so the entire outer panel must be evaluated. This requires a significant amount of computing resources and manpower. In this study, an approach utilizing artificial intelligence was proposed to streamline the outer panel stiffness analysis and improve development reliability.
Technical Paper

Optimization of Structural Rigidity of the Door Module Mounting part

2024-04-09
2024-01-2223
The recent surge in platforms like YouTube has facilitated greater access to information for consumers, and vehicles are no exception, so consumers are increasingly demanding of the quality of their vehicles. By the way, the door is composed of glass, moldings, and other parts that consumers can touch directly, and because it is a moving part, many quality issues arise. In particular, the door panel is assembled from all of the above-mentioned parts and thereby necessitates a robust structure. Therefore, this study focuses on the structural stiffness of the door inner panel module mounting area because the door module is closely to the glass raising and lowering, which is intrinsically linked to various quality issues.
Technical Paper

Development of a Light Weight Luggage Board Using the Sandwich Molding Method

2024-04-09
2024-01-2222
A crucial component utilized in the trunk space is the luggage board. Positioned at the bottom of the trunk, the trunk board separates the vehicle body from the interior and supports for luggage. The luggage board serves multiple functions, including load-bearing stiffness for luggage, partition structure functionality, noise insulation, and thermal insulation. There is a need for a competitive new luggage board manufacturing method to meet the increasing demand for luggage boards in response to the changing market environment. To address this, the "integrated sandwich molding method" is required. The integrated sandwich molding method utilizes three key methodologies: grouping processes to integrate similar functions, analyzing materials to replace them with suitable alternatives, and overcoming any lacking functionality through integrated design structures. This paper presents a methodology for developing the integrated sandwich molding method.
Technical Paper

A Study on the Evaluation of UX of Mid SUV

2024-04-09
2024-01-2460
In recent years, with the advent of the Fourth Industrial Revolution and the COVID-19 pandemic, people's lives worldwide have undergone significant changes. Additionally, the emergence of a new generation of consumers known as the millennial generation has led to a high demand for multipurpose family cars. The perspective is shifting towards choosing premium products that enhance the quality of life and pursue their own happiness and comfort through technology, rather than simply selecting a midsize SUV based on the increase in family size. We aim to meet the needs of these global customers by conducting research and developing various new features that were not previously available in midsize SUVs. In this study, we defined the actual target users for midsize SUVs and established UX concepts by analyzing their characteristics. Based on this, we employed an optimal design approach by analyzing the evaluation results by country for the various features implemented within the vehicle.
Technical Paper

An MBSE Methodology for Cross-Domain Vehicle Performance Development

2024-04-09
2024-01-2499
Even if an optimal design is produced in the mid-to-late stages of development, when the maturity of development is increasing, it is already difficult to accept the proposal between the organizations and functions. In case the optimal proposal is made with a small amount of information in the preceding stage, it will be helpful for mutual decision-making. In addition, if all members have a system and development environment that enables access and utilization of necessary data in a timely manner, it is possible to produce quick results through collaboration. To implement such a system and development environment, “digital modeling" of tangible and intangible assets will be essential and to implement an "integrated IT environment" that can access and utilize digital models. Until now, Hyundai Motor Company has not yet fully established a digital development environment that all researchers can simultaneously utilize during the concept development stage.
Technical Paper

Development and Simulation Validation of a Wheel/Tire Selective-Matching Algorithm Considering an Error Function of Wheel Runout Measuring Equipment

2024-04-09
2024-01-2651
In this study, a novel selective matching logic for a wheel/tire is proposed, to decrease the vehicle driving vibration caused by wheel/tire non-uniformity. The new logic was validated through matching simulation/in-line matching evaluation. A theoretical radial force variation model was established by considering the theoretical model of the existing references and the wheel/tire assembly mechanism. The model was validated with ZF’s high-speed uniformity equipment, which is standard in the tire industry. The validity of the new matching logic was verified through matching simulation and mass production in-line evaluation. In conclusion, the novel logic presented herein was demonstrated to effectively decrease the radial force variation caused by the wheel/tire.
Technical Paper

Optimization of Body D-Pillar Ring Structure

2023-04-11
2023-01-0604
The body stiffness plays a key role in vehicle performance, such as noise and vibration, ride and handling, durability and so on. In particular, a body D-pillar ring structure is the most sensitive affecting the body stiffness on vehicle with tail gate. Therefore, since D-pillar body ring structure for high stiffness and lightweight is required, an optimized design methodology that simultaneously satisfies the requirements was studied. It focused on a methodology that body engineering designers can optimize design parameters easily and quickly by themselves in the preceding stages of vehicle’s styling distribution and design conceptual planning. First, it is important to establish the body stiffness design strategy by predicting the body stiffness with the vehicle’s styling at early design stage. The methodology to predict body stiffness with the styling and body dimension specification parameters was introduced.
Technical Paper

Full Aluminum Body Design Considering Part-Specific Requirements

2023-04-11
2023-01-0603
In the era of electric vehicles(EVs), the need for weight reduction of the vehicle body is increasing in order to maximize the driving distance of the EV. Accordingly, there is an increasing need for research to efficiently apply lightweight materials, such as aluminum and CFRP, to the EV body parts. In this study, design methodologies and optimization measures to increase lightweight efficiency when applying lightweight materials to EVs will be discussed. Based on theoretical basis and basic performance of each part of the EV, the “Material Substitution Method” of replacing existing parts of a steel body with aluminum materials will be defined, and the optimal design process on how to overcome performance trade-off caused by material characteristics will be addressed. In applying the “Material Substitution Method” to the actual EV body design process, it was possible to convert 93% of the components from steel to aluminum and reduce the overall weight of the body by 23%.
Technical Paper

Development of Truck Platooning System Including Emergency Braking Function with Vehicle-in-the-Loop (VIL) Testing

2023-04-11
2023-01-0571
Platoon is a system that connects vehicles through vehicle-to-vehicle (V2V) communication technology to maintain a short distance between vehicles while driving on the road. To improve fuel efficiency, many automotive original equipment manufacturers (OEMs) are interested in developing and demonstrating real-world platoon system. However, it is hard for heavy duty trucks to develop this system due to the difficulty of maintaining the targeted intervehicle distance not only for fuel efficiency but also for safety in case of emergency braking. Because of this critical safety issue in the emergency situation, the platoon system for heavy duty trucks can be hardly demonstrated or tested in real vehicle environment. The relatively complex system and the slow response characteristic of commercial vehicles makes this even more difficult.
Journal Article

A Study on Flexible Transparent Electrode Materials for Touch Sensor

2023-04-11
2023-01-0074
As the AVN display in the car interior becomes larger and located above the center fascia, the driver's visual visibility is becoming important. In addition, since an expensive touch sensor is installed, a transparent electrode cost reduction technology for a display touch sensor that can replace an indium material, which is an expensive rare metal, is required. In this paper, we developed new transparent electrode materials and manufacturing methods for the touch sensor film which light reflectance is low and flexible without a separate low-reflection multi-layer, so that the design freedom is high and the material cost is low. By optimizing the amount of fluorine doping ratio in tin oxide, excellent electrical conductivity and high optical transmittance are secured, and the surface reflectance is reduced by adjusting the diameter and length of the silver nanowire. As a result, it was shown that the AVN display image and font readability was improved.
Technical Paper

A Conceptual Analysis in the Early Design Stage for the Road-Noise Reduction using FRF-Based Substructuring

2022-03-29
2022-01-0312
NVH analysis based on numerical simulations before actual test vehicle is available becomes common process in the automotive industry. Furthermore, the latest work scope is extending even to conceptual study in the very early design stage, beyond traditional numerical simulations simply using 3-D CAD data. In case when reasonable information is provided at this very early vehicle development stage, a better decision on the design concept would be possible, and subsequent design process can be carried out in more efficient manner. The core of this trend is that it allows us to predict vehicle performance at the conceptual design stage without 3-D CAD data, and then, with this prediction, to suggest meaningful design directions for next stage. From this point of view, FRF-Based Substructuring (FBS) methodology has potential to be used as an appropriate tool for this purpose.
Technical Paper

A Study to Reduce the Minimum Distance of the Vehicle Sensor’s Detecting Range Using a Prior Estimation Method

2022-03-29
2022-01-0072
As autonomous driving vehicles are developed, automotive makers start focusing on implementing new door types, such as a falcon wing door or a B-pillarless dual sliding door, which could be one of the best-selling points. To make these doors electrically operate, applying advanced sensors like a RADAR or an Ultrasonic sensor is almost mandatory. Without these sensors, the door could be easily damaged or the customers could be seriously injured. Due to physical limitation, however, every sensor has a noise in nearby area and has a specification of the minimum detection range, which causes us not to be able to precisely detect the object in close area. If the controller cannot detect the precise distance of the object, the door could malfunction, since it could misidentify the obstacles. In this paper, we propose a method to reduce the minimum detection range by applying a prior estimation scheme.
Technical Paper

Lateral Control of a Commercial Vehicle Using Feedback Augmented Disturbance Observer

2022-03-29
2022-01-0093
In the path following problem, a commercial vehicle has a delay of a hydraulic steering actuator and slow steering response accordingly. In addition, there are disturbances due to the harsh driving conditions of commercial vehicles. These disturbances may include uncertainties about actuator dynamic delay, modeling error and steering angle sensor offset. Designing a lateral controller with good performance that can overcome this problem is the key to successfully carrying out autonomous driving of commercial vehicles. Usually, it is difficult to consider disturbances with uncertainties in the geometric based control methods. Therefore, this paper proposed a lateral controller using feedback augmented disturbance observer for the commercial vehicle. First, a dynamics was modeled which can describe delay of the hydraulic actuator of the commercial vehicle. After that, a lateral controller was designed based on this dynamics model.
Technical Paper

Development of Vehicle Thermal Management Model for Improving the Energy Efficiency of Electric Vehicle

2022-03-29
2022-01-0201
Recently, automobile manufacturers are interested in the development of battery electric vehicle (BEV) having a longer mileage to satisfy customer needs. The BEV with high efficiency depends on the temperature of the electric components. Hence it is important to study the effect of the cooling system in electric vehicle in order to optimize efficiency and performance. In this study, we present a 1-D vehicle thermal management (VTM) simulation model. The individual vehicle subsystems were modeled including cooling, power electric (PE), mechanical, and control components. Each component was integrated into a single VTM model and it would be used to calculate energy transfer among electrical, thermal, and mechanical energy. As a result, this simulation model predicts a plenty of information including the state of each component such as temperature, energy consumption, and operating point about electric vehicle depending on driving cycles and environmental conditions.
Technical Paper

Development of the Frontal Crash Performance of Vehicle by Simplified Crash Model

2022-03-29
2022-01-0871
This study presents a design methodology to predict the crash behavior of mid-size sedan with a simplified crash model. Without detailed conventional finite element, the simplified crash model can be adopted in the early stage of the vehicle design. Designing vehicle structure to satisfy crash performance target is highly complex problem in the early design stage, because of the nonlinear mechanical behavior, high number of degrees-of-freedom, lack of information and boundary conditions changing over the following development process. In this study, the front structure of the vehicle is divided into load-carrying members and the rigid element through the analysis of load-carrying mechanism, and its physical property (force-displacement relation) is parameterized as the property of the non-linear discrete beam element of the LS-DYNA. The effectiveness of the proposed research is shown by the example of the mid-size sedan.
Technical Paper

Study on Selective Electroplating for Pattern/Lighting on Plastic

2021-04-06
2021-01-0367
For making metal touch feeling and lighting simultaneously, selective electroplating is widely applied in button, panel and etc. in interior/exterior parts of automotive. In this paper, new selective electroplating with printing are suggested as an alternative manufacturing process of two shot molding, PC (Polycarbonate) and ABS (Acrylonitrile-Butadiene-Styrene). Manufacturing process of selective electroplating with printing is as follows: For preventing to plate metal layer in area of letter or symbol, masking ink is printed on parts, button, panel, etc., with electroplatable PC+ABS. After conventional electroplating process, the part has electroplated metal layer except for the printed area. It had been studied the composition of ink and PC+ABS for obtaining skip plating and light transmittance on printed area.
Technical Paper

A Performance Design of Constant Pressure Type Exhaust Brake

2021-04-06
2021-01-0398
In commercial vehicles, the exhaust brake assists the service brake to share the excess load and is used as an auxiliary brake to assist with the safety of the engine and the service brake on downhill slopes. To meet the customer's demand for auxiliary brakes, the specification of auxiliary brakes must be determined at the product proposal stage. In this study, performance design was conducted to derive exhaust brake specifications that fit the customer's requirements. For performance design, a system model was created and key design factors with high performance contribution were extracted. Optimal specifications were derived from parameter studies for key design factors. Additionally, performance analysis was performed with design tolerances using the performance design model. Performance was verified through actual vehicle evaluation and design specifications were confirmed.
Technical Paper

Appropriate Damping Loss Factor of Vehicle Interior Cavity for Valid Application of Statistical Energy Analysis

2020-09-30
2020-01-1524
It is known that SEA is a rapid and simple methodology for analyzing complex vibroacoustic systems. However, the SEA principle is not always valid and one has to be careful about the physical conditions at which the SEA principle is acceptable. In this study, the appropriate damping loss factor of the vehicle interior cavity is studied in the viewpoint of the modal overlap factor of the cavity and the decay per mean free path (DMFP) of the cavity. Virtual SEA tests are performed with an FE model combination, which is suggested by a previous study of Stelzer et al. for the simulation of the sound transmission loss (STL) of vehicle panel structure. The FE model combination is consisting of the body in white (BIW), an acoustical-excited hemisphere-shaped exterior cavity, and the interior cavity. It is found that the DMFP of the interior cavity is appropriate between 0.5 ~ 1 dB for applying SEA principle.
Technical Paper

Development, System Integration and Experimental Investigation of an Active HVAC Noise Control System for a Passenger Car

2020-09-30
2020-01-1538
Current developments in the automotive industry such as electrification and consistent lightweight construction increasingly enable the application of active control systems for the further reduction of noise in vehicles. As different stochastic noise sources such as rolling and wind noise as well as noise radiated by the ventilation system are becoming more noticeable and as passive measures for NVH optimization tend to be heavy and construction-space intensive, current research activities focus on active reduction of noise caused by the latter mentioned sources. This paper illustrates the development, implementation and experimental investigation of an active noise control system integrated into the ventilation duct system of a passenger car.
Technical Paper

A Study on Optimization of the Cross-Section of Door Impact Beam for Weight Reduction

2020-04-14
2020-01-0631
This paper focuses on the optimization of the cross-section of a panel type impact door beam. The key parameters of the cross-section of the beam were artificially changed by using a geometry morphing tool FCM (Fast Concept Modeler), which is plugged in to CATIA. Then, the metamodel of FE (Finite Element) analysis results was created and optimized using LS-OPT. The ANOVA (Analysis of Variance) analysis of results was carried out to find the factor of weight reduction. Finally, a new cross section concept was proposed to overcome the limitation of old structure. The optimization was carried out for the beam with the final cross-section to have 10 % or more reduction in total weight.
X