Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Cool System, Lasting Power - an Outstanding E-Powertrain Meets MX Dirt Track

2024-04-09
2024-01-2165
The powertrain electrification is currently not only taking place in public road mobility vehicles, but is also making its way to the racetrack, where it’s driving innovation for developments that will later be used in series production vehicles. The current development focus for electric vehicles is the balance between driving power, range and weight, which is given even greater weighting in racing. To redefine the current limits, IAV developed a complete e-powertrain for a racing MX motorcycle and integrated it into a real drivable demonstrator bike. The unique selling point is the innovative direct phase-change cooling (PCC) of the three-phase e-motor and its power electronics, which enables significantly increased continuous power (Pe = 40 kW from 7,000 rpm to 9,000 rpm) without thermal power reduction. The drive unit is powered by a replaceable Lithium-Ion round cell battery (Ubat,max = 370V) with an energy storage capacity of Ebat = 5 kWh.
Journal Article

Future HD Diesel and Hydrogen-Fueled Concepts: Emissions Challenges and System Solutions

2022-08-30
2022-01-1011
Future heavy-duty (HD) concepts should fulfill very tight tail-pipe NOx emissions and simultaneously fulfill the fuel efficiency targets. In current HD Euro VII discussions, real working cycles become key to ensure emission conformity. For instance, cold start and cold ambient conditions during testing with low load profiles starting from 0% payload, require external heating measures. Knowing the trade-off between fuel consumption and tail-pipe NOx emissions a holistic engine and EAT system optimization with innovative thermal management is required. Towards a carbon neutral mobility, Hydrogen combustion engines are one of the key solutions. Advanced combustion system development enables maximal usage of lean burning as the major advantage of the Hydrogen fuel for efficiency improvement and NOx reduction.
Journal Article

Low-Temperature NOx Reduction by H2 in Diesel Engine Exhaust

2022-03-29
2022-01-0538
For the NOx removal from diesel exhaust, the selective catalytic reduction (SCR) and lean NOx traps are established technologies. However, these procedures lack efficiency below 200 °C, which is of importance for city driving and cold start phases. Thus, the present paper deals with the development of a novel low-temperature deNOx strategy implying the catalytic NOx reduction by hydrogen. For the investigations, a highly active H2-deNOx catalyst, originally engineered for lean H2 combustion engines, was employed. This Pt-based catalyst reached peak NOx conversion of 95 % in synthetic diesel exhaust with N2 selectivities up to 80 %. Additionally, driving cycle tests on a diesel engine test bench were also performed to evaluate the H2-deNOx performance under practical conditions. For this purpose, a diesel oxidation catalyst, a diesel particulate filter and a H2 injection nozzle with mixing unit were placed upstream to the full size H2-deNOx catalyst.
Technical Paper

High Efficiency HD Hydrogen Combustion Engines: Improvement Potentials for Future Regulations

2022-03-29
2022-01-0477
Hydrogen engines offer the possibility of a carbon neutral transportation - a focal point of current propulsion development activities especially for EU and US future concepts. From today's point of view, hydrogen can play an important role in this regard as it is a carbon-free fuel, no CO2 emissions are produced during its combustion process. Besides, it can be well used for lean burn combustion leading to very low NOx emissions, a key benefit in combination with an optimized after-treatment system for future ultra-low NOx legislations of heavy-duty (HD) engines. Comprehensive investigations using experimental tests and model-based development approach are performed using a six cylinder HD hydrogen engine featuring PFI (port fuel injection) aiming the definition of a high efficiency hydrogen engine concept.
Technical Paper

EGR Cooler Fouling Reduction: A New Method for Assessment in Early Engine Development Phase

2022-03-29
2022-01-0589
High pressure EGR provides NOx emission reduction even at low exhaust temperatures. To maintain a safe EGR system operation over a required lifetime, the EGR cooler fouling must not exceed an allowable level, even if the engine is operated under worst-case conditions. A reliable fouling simulation model represents a valuable tool in the engine development process, which validates operating and calibration strategies regarding fouling tendency, helping to avoid fouling issues in a late development phase close to series production. Long-chained hydrocarbons in the exhaust gas essentially impact the fouling layer formation. Therefore, a simulation model requires reliable input data especially regarding mass flow of long-chained hydrocarbons transported into the cooler. There is a huge number of different hydrocarbon species in the exhaust gas, but their individual concentration typically is very low, close to the detection limit of standard in-situ measurement equipment like GC-MS.
Technical Paper

Gane Fuel - Introduction of an Innovative, Carbon-Neutral and Low Emission Fuel for HD CI Engines

2021-09-21
2021-01-1198
The newest legislative trends enforce a significant decrease in CO2 emissions for commercial vehicles. For instance, in Europe a drop in fleet consumption of 15% and 30% is set as target by the regulation by 2025 and 2030. The use of carbon-neutral fuels offers possibilities regarding net-zero CO2 emissions - although not yet considered by the rules. Another challenging aspect is the drastic tightening of NOx emissions limits for future legislations, which is approved or being discussed both for the United States and for the EU. The current work describes the potentials of an innovative fuel, marketed as Gane fuel regarding performance, efficiency and emission behavior. First, the properties of the developed fuel are described: Gane is made from methanol blended with water and is tailored for diffusive combustion. The fuel blending is so defined to fulfill the combustion requirements.
Journal Article

Euro VII and Beyond with Hydrogen Combustion for Commercial Vehicle Applications: From Concept to Series Development

2021-09-21
2021-01-1196
One challenge for the development of commercial vehicles is the reduction of CO2 greenhouse, where hydrogen can help to reduce the fleet CO2. For instance, in Europe a drop in fleet consumption of 15% and 30% is set as target by the regulation until 2025 and 2030. Another challenge is EURO VII in EU or even already approved CARB HD Low NOx Regulation in USA, not only for Diesel but also for hydrogen combustion engines. In this study, first the requirements for the combustion and after-treatment system of a hydrogen engine are defined based on future emission regulations. The major advantages regarded to hydrogen combustion are due to the wide range of flammability and very high flame speed numbers compared to other fossil based fuels. Thus, it can be well used for lean burn combustion with much better fuel efficiency and very low NOx emissions with an ultra lean combustion. A comprehensive experimental investigation is performed on a HD 2 L single-cylinder engine.
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Technical Paper

Hybrid Physical and Machine Learning-Oriented Modeling Approach to Predict Emissions in a Diesel Compression Ignition Engine

2021-04-06
2021-01-0496
The development and calibration of modern combustion engines is challenging in the area of continuously tightening emission limits and the necessity for meeting real driving emissions regulations. A focus is on the knowledge of the internal engine processes and the determination of pollutants formations in order to predict the engine emissions. A physical model-based development provides an insight into hardly measurable phenomena properties and is robust against changing input data. With increasing modeling depth the required computing capacities increase. As an alternative to physical modeling, data-driven machine learning methods can be used to enable high-performance modeling accuracy. However, these are dependent on the learned data. To combine the performance and robustness of both types of modeling a hybrid application of data-driven and physical models is developed in this paper as a grey box model for the exhaust emission prediction of a commercial vehicle diesel engine.
Technical Paper

Numerical and Experimental Investigations of Hydrogen Combustion for Heavy-Duty Applications

2021-04-06
2021-01-0522
Reduction of the CO2 greenhouse gas emissions is one major challenge the automotive industry as a part of the transportation sector is facing. Hydrogen is regarded as one of the key energy solutions for CO2 reduction in the future transportation sector. First, a hydrogen-powered single-cylinder test rig for 2 liter heavy-duty engine will be introduced. Followed by a discussion of experimental results including variations of engine speed, torque, ignition strategy, air-fuel ratio, etc. In addition, the paper proposes a new phenomenological model for the prediction of hydrogen combustion. The model is based on the well-known two-zone Entrainment approach, supported by newly developed hydrogen-specific submodels for the calculation of the laminar flame speed and auto-ignition in the unburned mass zone. The developed physical-based combustion model is extensively validated based on the experimental single-cylinder results.
Technical Paper

A Simulation Method for the Calculation of Water Condensation inside Charge Air Coolers

2021-04-06
2021-01-0226
The automotive industry uses supercharging in combination with various EGR strategies to meet the increasing demand for Diesel engines with high efficiency and low engine emissions. The charge air is heated by the EGR and the compression in the turbocharger to such an extent that high NOx emissions and a reduction in engine performance occurs. For this reason, the charge air cooler cools down the charge air before it enters the air intake manifold. In case of low pressure EGR, the charge air possesses a high moisture content and under certain operating conditions an accumulation of condensate takes place within the charge air cooler. During demanding engine loads, the condensate is entrained from the charge air cooler into the combustion chamber, resulting in misfiring or severe engine damage.
Journal Article

Experimental Investigation of the Pressure Drop during Water Condensation inside Charge Air Coolers

2021-04-06
2021-01-0202
This paper investigates the pressure drop with and without condensation inside a charge air cooler. The background to this investigation is the fact that the stored condensate in charge air coolers can be torn into the combustion chamber during different driving states. This may result in misfiring or in the worst-case lead to an engine failure. In order to prevent or reduce the accumulated condensate inside charge air coolers, a better understanding of the detailed physics of this process is required. To this end, one single channel of the charge air side is investigated in detail by using an experimental setup that was built to reproduce the operating conditions leading to condensation. First, measurements of the pressure drop without condensation are conducted and a good agreement with experimental data of a comparable heat exchanger reported in Kays and London [1] is shown.
Technical Paper

Numerical Investigation of Tonal Noise at Automotive Side Mirrors due to Aeroacoustic Feedback

2020-09-30
2020-01-1514
This paper describes the possibility to resolve aeroacoustic feedback with a commercial 2nd/3rd order finite volume CFD code [1]. After a first comparison to a NACA 0012 test case, tonal noise components of a realistic automotive side view mirror are validated with in-house wind tunnel measurements. A zonal RANS/LES approach is used to ensure a realistic flow around the exterior side mirror mounted on a Mercedes-Benz passenger car. The provided compressible large eddy simulations are using non-reflecting boundary conditions in combination with a sponge zone approach to reduce hydrodynamic fluctuations and are in great accordance to measurements. The possibility of localizing and investigating the underlying feedback mechanism enables the chance for a targeted design of different appropriate remedies, which are finally confirmed by means of experimental comparison.
Journal Article

Holistic Engine and EAT Development of Low NOX and CO2 Concepts for HD Diesel Engine Applications

2020-09-15
2020-01-2092
The latest legislative tendencies for on-highway heavy duty vehicles in the United States such as the feasibility assessment of low NOX standards of CARB or EPA’s memorandum forecast further tightening of the NOX emissions limits. In addition, the GHG Phase 2 legislation and also phased-in regulations in the EU enforce a continuous reduction in CO2 emissions resp. fuel consumption. In order to meet such low NOX emission limits, a rapid heat-up of the exhaust after-treatment system (EATS) is inevitable. However, the required thermal management results in increased fuel consumption, i.e. CO2 emissions as shown in numerous previous works also by the authors. A NOX-CO2 trade-off for cumulative cycle emissions can be observed, which can be optimized by using more advance technologies on the engine and/or on the EATS side.
Technical Paper

Assessing the Efficiency of a New Gasoline Compression Ignition (GCI) Concept

2020-09-15
2020-01-2068
A practical Gasoline Compression Ignition (GCI) concept is presented that works on standard European 95 RON E10 gasoline over the whole speed/load range. A spark is employed to assist the gasoline autoignition at low loads; this avoids the requirement of a complex cam profile to control the local mixture temperature for reliable autoignition. The combustion phasing is controlled by the injection pattern and timing, and a sufficient degree of stratification is needed to control the maximum rate of pressure rise and prevent knock. With active control of the swirl level, the combustion system is found to be relatively robust against variability in charge motion, and subtle differences in fuel reactivity. Results show that the new concept can achieve very low fuel consumption over a significant portion of the speed/load map, equivalent to diesel efficiency. The efficiency is worse than an equivalent diesel engine only at low load where the combustion assistance operates.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Hybrid Phenomenological and Mathematical-Based Modeling Approach for Diesel Emission Prediction

2020-04-14
2020-01-0660
In order to reduce the negative health effects associated with engine pollutants, environmental problems caused by combustion engine emissions and satisfy the current strict emission standards, it is essential to better understand and simulate the emission formation process. Further development of emission model, improves the accuracy of the model-based optimization approach, which is used as a decisive tool for combustion system development and engine-out emission reduction. The numerical approaches for emission simulation are closely coupled to the combustion model. Using a detailed emission model, considering the 3D mixture preparation simulation including, chemical reactions, demands high computational effort. Phenomenological combustion models, used in 1D approaches for model-based system optimization can deliver heat release rate, while using a two-zone approach can estimate the NOx emissions.
Technical Paper

A Phenomenological Homogenization Model Considering Direct Fuel Injection and EGR for SI Engines

2020-04-14
2020-01-0576
As a consequence of reduced fuel consumption, direct injection gasoline engines have already prevailed against port fuel injection. However, in-cylinder fuel homogenization strongly depends on charge motion and injection strategies and can be challenging due to the reduced available time for mixture formation. An insufficient homogenization has generally a negative impact on the combustion and therefore also on efficiency and emissions. In order to reach the targets of the intensified CO2 emission reduction, further increase in efficiency of SI engines is essential. In this connection, 0D/1D simulation is a fundamental tool due to its application area in an early stage of development and its relatively low computational costs. Certainly, inhomogeneities are still not considered in quasi dimensional combustion models because the prediction of mixture formation is not included in the state of the art 0D/1D simulation.
Technical Paper

Performance Improvement of an Asymmetric Twin Scroll Turbocharger Turbine through Secondary Flow Injection

2020-04-14
2020-01-1011
A powerful and efficient turbocharger turbine benefits the engine in many aspects, such as better transient response, lower NOx emissions and better fuel economy. The turbine performance can be further improved by employing secondary flow injection through an injector over the shroud section. A secondary flow injection system can be integrated with a conventional turbine without affecting its original design parameters, including the rotor, volute, and back disk. In this study, a secondary flow injection system has been developed to fit for an asymmetric twin-scroll turbocharger turbine, which was designed for a 6-cylinder heavy-duty diesel engine, aiming at improving the vehicle’s performance at 1100 rpm under full-loading conditions. The shape of the flow injector is similar to a single-entry volute but can produce the flow angle in both circumferential and meridional directions when the flow leaves the injector and enters the shroud cavity.
Journal Article

Optimization of an Asymmetric Twin Scroll Volute Turbine under Pulsating Engine Boundary Conditions

2020-04-14
2020-01-0914
Future CO2 emission legislation requires the internal combustion engine to become more efficient than ever. Of great importance is the boosting system enabling down-sizing and down-speeding. However, the thermodynamic coupling of a reciprocating internal combustion engine and a turbocharger poses a great challenge to the turbine as pulsating admission conditions are imposed onto the turbocharger turbine. This paper presents a novel approach to a turbocharger turbine development process and outlines this process using the example of an asymmetric twin scroll turbocharger applied to a heavy duty truck engine application. In a first step, relevant operating points are defined taking into account fuel consumption on reference routes for the target application. These operation points are transferred into transient boundary conditions imposed on the turbine.
X