Refine Your Search

Topic

Search Results

Technical Paper

Assessment of Dilution Options on a Hydrogen Internal Combustion Engine

2023-08-28
2023-24-0066
The hydrogen internal combustion engine is a promising alternative to fossil fuel-based engines, which, in a short time, can reduce the carbon footprint of the ground transport sector. However, the high heat release rates associated with hydrogen combustion results in higher NOx emissions. The NOx production can be mitigated by diluting the in-cylinder mixture with air, Exhaust Gas Recirculation (EGR) or water injected in the intake manifold. This study aims at assessing these dilution options on the emissions, efficiency, combustion performance and boosting effort. These dilution modes are, at first, compared on a single cylinder engine (SCE) with direct injection of hydrogen in steady state conditions. Air and EGR dilutions are then evaluated on a corresponding 4-cylinder engine by 0D simulation on a complete map under NOx emission constraint.
Technical Paper

Impacts of Ethanol Level and Aromatic Hydrocarbon Structure in the Fuel on the Particle Emissions from a Gasoline Direct Injection Vehicle

2020-09-15
2020-01-2194
The recent particle number limits for a spark ignition engine combined with the real driving emissions (RDE) compliance have motivated the need for a better understanding of the effect of the gasoline fuel composition on the particle emissions. More particularly, the fundamental role of high boiling point components and heavy aromatics on particle emissions was highlighted in several literature works. In addition, works driven by the European Renewable Energy Directive are underway in order to explore the feasibility of an increased amount of sustainable Biofuels in Gasoline. Already widely distributed, ethanol is a clear candidate to such an increase. In this context, the present work aims to understand the effect of ethanol addition and aromatics composition on particulate emissions. Vehicle tests were performed over the Worldwide Harmonized Light Vehicles Test Cycle (WLTC) using a Euro 6c model without a Gasoline Particulate Filter (GPF) and a Euro 6d-Temp one equipped with a GPF.
Technical Paper

Study of Simple Detection of Gasoline Fuel Contaminants Contributing to Increase Particulate Matter Emissions

2020-04-14
2020-01-0384
The reduction of particulate emissions is one of the most important challenges facing the development of future gasoline engines. Several studies have demonstrated the impact of fuel chemical composition on the emissions of particulate matter, more particularly, the detrimental effect of high boiling point components such as heavy aromatics. Fuel contamination is likely to become a critical issue as new regulations such as Real Driving Emissions RDE involves the use of market fuel. The objective of this study is to investigate several experimental approaches to detect the presence of Diesel contamination in Gasoline which is likely to alter pollutant emissions. To achieve this, a fuel matrix composed of 12 fuels was built presenting diesel fuel in varying concentrations from 0.1 to 2% v/v. The fuel matrix was characterized using several original techniques developed in this study.
Technical Paper

Towards Quantitative Prediction of Urea Thermo-Hydrolysis and Deposits Formation in Exhaust Selective Catalytic Reduction (SCR) Systems

2019-04-02
2019-01-0992
In order to assist in fast design cycle of Diesel engines selective catalytic reduction (SCR) exhaust systems, significant endeavor is currently being made to improve numerical simulation accuracy of urea thermo-hydrolysis. In this article, the achievements of a recently developed urea semi-detailed decomposition chemical scheme are assessed using three available databases from the literature. First, evaporation and thermo-hydrolysis of urea-water solution (UWS) single-droplets hanged on a thin thermocouple ring (127 μm) as well as on a thick quartz (275 μm), have been simulated at ambient temperature conditions ranging from 473K to 773K. It has been shown that the numerical results, in terms of evaporation rate and urea gasification, as well as droplet temperature history are very close to the experiments if the heat flux coming from the droplet support is properly accounted for.
Technical Paper

Experimental Investigation of Novel Ammonia Mixer Designs for SCR Systems

2018-04-03
2018-01-0343
Meeting Euro 6d NOx emission regulations lower than 80 mg/km for light duty diesel (60 mg/km gasoline) vehicles remains a challenge, especially during cold-start tests at which the selective catalyst reduction (SCR) system does not work because of low exhaust gas temperatures (light-off temperature around 200 °C). While several exhaust aftertreatment system (EATS) designs are suggested in literature, solutions with gaseous ammonia injections seem to be an efficient and cost-effective way to enhance the NOx abatement at low temperature. Compared to standard SCR systems using urea water solution (UWS) injection, gaseous NH3 systems allow an earlier injection, prevent deposit formation and increase the NH3 content density. However non-uniform ammonia mixture distribution upstream of the SCR catalyst remains an issue. These exhaust gas/ NH3 inhomogeneities lead to a non-optimal NOx reduction performance, resulting in higher than expected NOx emissions and/or ammonia slip.
Technical Paper

Combustion Optimization of a Multi-Cylinder CI Engine Running with a Low RON Gasoline Fuel Considering Different Air Loop and After-Treatment Configurations

2017-10-08
2017-01-2264
Recent work has demonstrated the potential of gasoline-like fuels to reduce NOx and particulate emissions when used in compression ignition engines. In this context, low research octane number (RON) gasoline, a refinery stream derived from the atmospheric crude oil distillation process, has been identified as a highly valuable fuel. In addition, thanks to its higher H/C ratio and energy content compared to diesel, CO2 benefits are also expected when used in such engines. In previous studies, different cetane number (CN) fuels have been evaluated and a CN 35 fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern and nozzle design have been performed on a single cylinder compression-ignition engine.
Journal Article

Simulation and Optical Diagnostics to Characterize Low Octane Number Dual Fuel Strategies: a Step Towards the Octane on Demand Engine

2016-10-17
2016-01-2164
Reduction of CO2 emissions is becoming one of the great challenges for future gasoline engines. Downsizing is one of the most promising strategies to achieve this reduction, though it facilitates occurrence of knocking. Therefore, downsizing has to be associated with knock limiting technologies. The aim of the current research program is to adapt the fuel Research-Octane-Number (RON) injected in the combustion chamber to prevent knock occurrence and keep combustion phasing at optimum. This is achieved by a dual fuel injection strategy, involving a low-RON naphtha-based fuel (Naphtha, RON 71) and a high-RON octane booster (Ethanol, RON107). The ratio of fuel quantity on each injector is adapted to fit the RON requirement as a function of engine operating conditions. Hence, it becomes crucial to understand and predict the mixture preparation, to quantify its spatial and cycle-to-cycle variations and to apprehend the consequences on combustion behavior - knock especially.
Technical Paper

Study of ECN Injectors’ Behavior Repeatability with Focus on Aging Effect and Soot Fluctuations

2016-04-05
2016-01-0845
The Engine Combustion Network (ECN) has become a leading group concerning the experimental and computational analysis of engine combustion phenomena. In order to establish a coherent database for model validation, all the institutions participating in the experimental effort carry out tests at well-defined boundary conditions and using wellcharacterized hardware. In this framework, the reference Spray A injectors have produced different results even when tested in the same facility, highlighting that the nozzle employed and its fouling are important parameters to be accounted for. On the other hand, the number of the available Spray A injectors became an issue, due to the increasing number of research centers and simultaneous experiments taking place in the ECN community. The present work has a double aim: on the one hand, to seek for an appropriate methodology to “validate” new injectors for ECN experiments and to provide new hardware for the ECN community.
Technical Paper

Potential of CN25 Naphtha-Based Fuel to Power Compression Ignition Engines

2016-04-05
2016-01-0765
Recent work has demonstrated the potential of gasoline-like fuels to reduce NOx and particulate emissions when used in Diesel engines. In this context, straight-run naphtha, a refinery stream directly derived from the atmospheric crude oil distillation process, has been identified as a highly valuable fuel. The current study is one step further toward naphtha-based fuel to power compression ignition engines. The potential of a cetane number 25 fuel (CN25), resulting from a blend of hydro-treated straight-run naphtha CN35 with unleaded non-oxygenated gasoline RON91 was assessed. For this purpose, investigations were conducted on multiple fronts, including experimental activities on an injection test bed, in an optically accessible vessel and in a single cylinder engine. CFD simulations were also developed to provide relevant explanations.
Technical Paper

An ICE Map Generation Tool Applied to the Evaluation of the Impact of Downsizing on Hybrid Vehicle Consumption

2015-09-06
2015-24-2385
Legal constraints concerning CO2 emissions have made the improvement of light duty vehicle efficiency mandatory. In result, vehicle powertrain and its development have become increasingly complex, requiring the ability to assess rapidly the effect of several technological solutions, such as hybridization or internal combustion engine (or ICE) downsizing, on vehicle CO2 emissions. In this respect, simulation is nowadays a common way to estimate a vehicle's fuel consumption on a given driving cycle. This estimation can be done with the knowledge of vehicle main characteristics, its transmission ratio and efficiency and its internal combustion engine fuel consumption map. While vehicle and transmission parameters are relatively easy to know, the ICE consumption map has to be obtained through either test bench measurements or computation.
Technical Paper

Potential of Naphtha-like Fuel on an Existing Modern Compression Ignition Engine

2015-09-01
2015-01-1813
Recent work has demonstrated the potential of gasoline-like fuels to reduce NOX and particulates emissions when used in diesel engines. Indeed, fuels highly resistant to auto-ignition provide more time for fuel and air mixing prior to the combustion and therefore a more homogeneous combustion. Nevertheless, major issues still need to be addressed, particularly regarding UHC and CO emissions at low load and particulate/noise combustion trade-off at high load. The purpose of this study is to investigate how an existing modern diesel engine could be operated with low-cetane fuels and define the most appropriate Cetane Number (CN) to reduce engine-out emissions. With this regard, a selection of naphtha and gasoline blends, ranging from CN30/RON 57 to CN35/RON 41 was investigated on a Euro 5, 1.6L four-cylinder engine. Results were compared to the conventional diesel running mode using a minimum NOX level oriented calibration, both in steady state and transient conditions.
Technical Paper

Sensitivity of SCR Control Strategies to Diesel Exhaust Fluid Quality: A Simulation Study

2015-04-14
2015-01-1051
This paper presents the evaluation of the impact of Diesel Exhaust Fluid (DEF) quality on the behavior of a controlled SCR system. Proper control of the Selective Catalytic Reduction system is crucial to fulfill NOx emissions standards of modern Diesel engines. Today, the urea concentration of DEF is not considered as a control system input. Moreover, Urea Quality Sensors (UQS) are now available to provide real time information of Diesel Exhaust Fluid quality. The impact of percent urea from 20 to 36% on the NOx emissions of a passenger car 2.2L Diesel engine is calculated using a reference SCR model and a reference SCR control tool in multiple NEDC transient conditions. Several control tunings are tested with different levels of feedback. Ammonia slip levels are also calculated.
Journal Article

On the Effects of EGR on Spark-Ignited Gasoline Combustion at High Load

2014-10-13
2014-01-2628
EGR dilution is a promising way to improve fuel economy of Spark-Ignited (SI) gasoline engines. In particular, at high load, it is very efficient in mitigating knock at low speed and to decrease exhaust temperature at high speed so that fuel enrichment can be avoided. The objective of this paper is to better understand the governing mechanisms implied in EGR-diluted SI combustion at high load. For this purpose, measurements were performed on a modern, single-cylinder GDI engine (high tumble value, multi-hole injector, central position). In addition 0-D and 1-D Chemkin simulations (reactors and flames) were used to complete the engine tests so as to gain a better understanding of the physical mechanisms. EGR benefits were confirmed and characterized at 19 bar IMEP: net ISFC could be reduced by 17% at 1200rpm and by 6% at 5000rpm. At low speed, knock mitigation was the main effect, improving the cycle efficiency by a better combustion phasing.
Technical Paper

Experimental Characterization of SCR DeNOx-Systems: Visualization of Urea-Water-Solution and Exhaust Gas Mixture

2014-04-01
2014-01-1524
The selective catalytic reduction (SCR) based on urea water solution (UWS) is an effective way to reduce nitrogen oxides (NOx) emitted by engines. The high potential offered by this solution makes it a promising way to meet the future stringent exhaust gas standards (Euro6 and Tier2 Bin5). UWS is injected into the exhaust upstream of an SCR catalyst. The catalyst works efficiently and durably if the spray is completely vaporized and thoroughly mixed with the exhaust gases before entering. Ensuring complete vaporization and optimum mixture distribution in the exhaust line is challenging, especially for compact exhaust lines. Numerous parameters affect the degree of mixing: urea injection pressure and spray angle, internal flow field (fluid dynamics), injector location …. In order to quantify the mixture quality (vaporization, homogeneity) upstream of the SCR catalyst, it is proposed to employ non intrusive optical diagnostics techniques such as laser induced fluorescence (LIF).
Technical Paper

A Sectional Soot Model for RANS Simulation of Diesel Engines

2014-04-01
2014-01-1590
In this paper, a sectional soot model coupled to a tabulated combustion model is compared with measurements from an experimental engine database. The sectional soot model, based on the work of Vervisch-Klakjic (Ph.D. thesis, Ecole Centrale Paris, Paris, 2011) and Netzell et al. (P. Combust. Inst., 31(1):667-674, 2007), has been implemented into IFPC3D (Bohbot et al., Oil Gas Sci Technol, 64(3):309-335, 2009), a 3D RANS solver. It enables a complex modeling of soot particles evolution, in a 3D Diesel simulation. Five distinct source terms are applied to each soot section at any time and any location of the flow. The inputs of the soot model are provided by a tabulated combustion model derived from the Engine Approximated Diffusion Flame (EADF) one (Michel and Colin, Int. J. Engine Res., 2013) and specifically modified to include the minor species required by the soot model.
Technical Paper

Numerical and Experimental Investigation of Combustion Regimes in a Dual Fuel Engine

2013-09-08
2013-24-0015
Among the new combustion concepts envisaged to meet future regulations, the Dual Fuel (DF) concept is considered to be an attractive strategy due to its potential to reduce CO2 emissions and engine-out pollutant emissions levels. A small quantity of high-cetane fuel (Diesel) is injected in the combustion chamber in order to ignite a homogeneous mixture of air and a highly volatile fuel (gasoline in our study). The DF concept has been shown to achieve improved engine thermal efficiency and low engine-out NOx and soot emissions. However, the physical mechanisms controlling DF combustion and in particular, determination of the predominant combustion regime(s) are not yet well understood. In this study, numerical simulations (CFD) and optical engine measurements are used to investigate Dual Fuel combustion.
Technical Paper

How to Improve Light Duty Diesel Based on Heavy Duty Diesel Thermodynamic Analysis?

2013-04-08
2013-01-1623
The Diesel engine has now become a vital component of the transport sector, in view of its performance in terms of efficiency and therefore CO2 emissions some 25 % less than a traditional gasoline engine, its main competitor. However, the introduction of more and more stringent regulations on engine emissions (NOx, PM) requires complex after-treatment systems and combustion strategies to decrease pollutant emissions (regeneration strategies, injection strategies, …) with some penalty in fuel consumption. It becomes necessary to find new ways to improve the Diesel efficiency in order to maintain its inherent advantage. In the present work, we are looking for strategies and technologies to reduce Diesel engine fuel consumption. Based on the observation that large Diesel engines have a better efficiency than the smaller ones, a detailed thermodynamic combustion analysis of one Heavy Duty (HD) engine and two Passenger car (PC) engines is performed to understand these differences.
Technical Paper

Optimal Online Energy Management for Diesel HEV: Robustness to Real Driving Conditions

2013-04-08
2013-01-1471
This paper addresses the robustness of an optimal online energy management for diesel hybrid electric vehicle (HEV). Optimal strategy is based on the Equivalent Consumption Minimization Strategy (ECMS). Optimal torque split between engine and electric motor is found by minimizing fuel consumption and Nitrogen Oxides (NOx) emissions. Online adaptation is made in order to ensure battery charge sustainability and good driveability when driving conditions are unknown. The strategy is tested in simulation over one hundred driving cycles representative of real-world conditions. Results obtained with the online strategy are compared with those of an offline optimal strategy (knowing the driving cycle a priori). Even if a slight degradation is noticed in comparison to optimal case, fuel economy and NOx reduction - provided by hybridization - are conserved with the online strategy.
Technical Paper

A Semi-Physical NOx Model for Diesel Engine Control

2013-04-08
2013-01-0356
In this paper, a new physics-based model for the prediction of NOx emissions produced by diesel engines is presented. The aim of this work is to provide a reference model for the validation of control strategies and NOx estimators. The model describes the NOx production in the burned gas zone where the burned gas temperature sub-model is adapted to be generic and tunable. The model consists of three main sub-models for the estimation of the burned gas temperature, the concentration of the species in the burned gases and the NOx formation, respectively. A new model for estimating the burned gas temperature, known to have a strong impact on thermal NOx formation rate, is proposed. The model depends on the intake burned gas ratio and the combustion phasing computed from the cylinder pressure. This model has a limited number of calibration parameters identified so that NOx model output matches with experimental data measured in a four-cylinder, four-stroke, direct-injection diesel engine.
Journal Article

Energy Management Strategy and Optimal Hybridization Level for a Diesel HEV

2012-04-16
2012-01-1019
The design and the supervision of hybrid electric vehicles (HEV) are strongly coupled. The mutual influence between the optimal components sizing and the optimal operating points choice makes the problem complex. This was previously exposed in literature for spark ignition (SI) HEV. In this paper, we address the same issue for diesel HEV. In this case, the energy management strategy must take nitrogen oxides (NOx) emissions into account in addition to fuel consumption. This paper presents an optimal supervision strategy and its impact on the electric components sizing. The energy management strategy is based on the equivalent consumption minimization strategy (ECMS) using Pontryagin's minimum principle. It allows an adjustable trade-off between NOx and fuel consumption to be minimized. It was validated experimentally with a hardware-in-the-loop test bed.
X