Refine Your Search

Topic

Search Results

Technical Paper

Enhancing Lateral Stability in Adaptive Cruise Control: A Takagi-Sugeno Fuzzy Model-Based Strategy

2024-04-09
2024-01-1962
Adaptive cruise control is one of the key technologies in advanced driver assistance systems. However, improving the performance of autonomous driving systems requires addressing various challenges, such as maintaining the dynamic stability of the vehicle during the cruise process, accurately controlling the distance between the ego vehicle and the preceding vehicle, resisting the effects of nonlinear changes in longitudinal speed on system performance. To overcome these challenges, an adaptive cruise control strategy based on the Takagi-Sugeno fuzzy model with a focus on ensuring vehicle lateral stability is proposed. Firstly, a collaborative control model of adaptive cruise and lateral stability is established with desired acceleration and additional yaw moment as control inputs. Then, considering the effect of the nonlinear change of the longitudinal speed on the performance of the vehicle system.
Technical Paper

Damping Force Optimal Control Strategy for Semi-Active Suspension System

2024-04-09
2024-01-2286
Semi-active suspension system (SASS) could enhance the ride comfort of the vehicle across different operating conditions through adjusting damping characteristics. However, current SASS are often calibrated based on engineering experience when selecting parameters for its controller, which complicates the achievement of optimal performance and leads to a decline in ride comfort for the vehicle being controlled. Linear quadratic constrained optimal control is a crucial tool for enhancing the performance of semi-active suspensions. It considers various performance objectives, such as ride comfort, handling stability, and driving safety. This study presents a control strategy for determining optimal damping force in SASS to enhance driving comfort. First, we analyze the working principle of the SASS and construct a seven-degree-of-freedom model.
Technical Paper

Energy Dissipation Characteristics Analysis of Automotive Vibration PID Control Based on Adaptive Differential Evolution Algorithm

2024-04-09
2024-01-2287
To address the issue of PID control for automotive vibration, this paper supplements and develops the evaluation of automotive vibration characteristics, and proposes a vibration response quantity for evaluating the energy dissipation characteristics of automotive vibration. A two-degree-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined. This paper uses the Adaptive Differential Evolution (ADE) algorithm to tune the PID control parameters and introduces an adaptive mutation factor to improve the algorithm's adaptability. Several commonly used adaptive mutation factors are summarized in this paper, and their effects on algorithm improvement are compared.
Technical Paper

Research on the Control Strategy of Electric Vehicle Active Suspension Based on Fuzzy Theory

2024-04-09
2024-01-2290
The performance of suspension system has a direct impact on the riding comfort and smoothness. For the traditional suspension can not effectively alleviate the impact of road surface and the poor anti-vibration performance, The dynamics model of vehicle suspension system is established, and the control model of vehicle four-degree-of-freedom active suspension is designed with fuzzy control strategy. On this basis, a comprehensive simulation model of the control model of vehicle active suspension coupled with road excitation is established. and the ride comfort of vehicles under different types of suspension are tested through Simulink. The simulation results show that compared with the passive suspension, the reduction of vehicle acceleration and dynamic deformation of the active suspension controlled by fuzzy PID can reach 33.76% and 22.45%. and the reduction of pitch Angle speed and dynamic load of the active suspension controlled by fuzzy PID can reach 16.18% and 10.72%.
Technical Paper

Investigation of Diffuse Axonal Injury in Rats Induced by the Combined Linear and Rotational Accelerations Using Diffusion Tensor Imaging

2024-04-09
2024-01-2513
Diffuse Axonal Injury (DAI) is the most common type of traumatic brain injury, and it is associated with the linear and rotational accelerations resulting from head impacts, which often occurs in traffic related and sports accidents. To investigate the degree of influence of linear and rotational acceleration on DAI, a two-factor, two-level rat head impact experimental protocol involving linear and rotational acceleration was established using the L4(23) orthogonal table in this paper. Following the protocol, rats head was injured and diffusion tensor imaging (DTI) was performed at 24h post-injury to obtain the whole brain DAI injury, and the fractional anisotropy (FA) value of the corpus callosum was selected as the evaluation indicator. Using analysis of variance, the sum of squared deviations for the evaluation indicators was calculated to determine the degree of influence of linear acceleration and rotational acceleration on DAI. The results show that, 1.
Technical Paper

Multifactorial Mechanical Properties Study on Rat Skin at Intermediate Strain Rates - Using Orthogonal Experimental Design

2024-04-09
2024-01-2512
Most of the skin injuries caused by traffic accidents, sports, falls, etc. are in the intermediate strain rate range (1-100s-1), and the injuries may occur at different sites, impact velocities, and orientations. To investigate the multifactorial mechanical properties of rat skin at intermediate strain rates, a three-factor, three-level experimental protocol was established using the standard orthogonal table L9(34), which includes site (upper dorsal, lower dorsal, and ventral side), strain rate (1s-1, 10s-1, and 100 s-1), and sampling orientation (0°, 45°, and 90° relative to the spine). Uniaxial tensile tests were performed on rat skin samples according to the protocol to obtain stress-stretch ratio curves. Failure strain energy was selected as the index, and the influence of each factor on these indexes, the differences between levels of each factor, and the influence of errors on the results were quantified by analysis of variance (ANOVA).
Technical Paper

Biosignal-Based Driving Experience Analysis between Automated Mode and Manual Mode

2024-04-09
2024-01-2504
With the rapid development of intelligent driving technology, there has been a growing interest in the driving comfort of automated vehicles. As vehicles become more automated, the role of the driver shifts from actively engaging in driving tasks to that of a passenger. Consequently, the study of the passenger experience in automated driving vehicles has emerged as a significant research area. In order to examine the impact of automatic driving on passengers' riding experience in vehicle platooning scenarios, this study conducted real vehicle experiments involving six participants. The study assessed the subjective perception scores, eye movement, and electrocardiogram (ECG) signals of passengers seated in the front passenger seat under various vehicle speeds, distances, and driving modes. The results of the statistical analysis indicate that vehicle speed has the most substantial influence on passenger perception.
Technical Paper

Functional Safety Concept Design of Vehicle Steer-by-Wire System

2024-04-09
2024-01-2792
Steer-By-Wire (SBW) system directly transmits the driver's steering input to the wheels through electrical signals. However, the reliability of electronic equipment is significantly lower than that of mechanical structures, and the risk of failure increases, so it is important to conduct functional safety studies on SBW systems. This paper develops the functional safety of the SBW system according to the requirements of the international standard ISO26262, and first defines the relevant items and application scope of SBW system. Secondly, the Hazard and Operability (HAZOP) method was used to combine scenarios and possible dangerous events to carry out Hazard Analysis and Risk Assessment (HARA), and the Automotive Safety Integrity Level (ASIL) was obtained according to the three evaluation indicators of Exposure, Severity and Controlabillity, and then the corresponding safety objectives were established and Fault Tolerant Time Interval (FTTI) was set.
Technical Paper

Driving Style Identification Strategy Based on DS Evidence Theory

2023-04-11
2023-01-0587
Driving assistance system is regarded as an effective method to improve driving safety and comfort and is widely used in automobiles. However, due to the different driving styles of different drivers, their acceptance and comfort of driving assistance systems are also different, which greatly affects the driving experience. The key to solving the problem is to let the system understand the driving style and achieve humanization or personalization. This paper focuses on clustering and identification of different driving styles. In this paper, based on the driver's real vehicle experiment, a driving data acquisition platform was built, meanwhile driving conditions were set and drivers were recruited to collect driving information. In order to facilitate the identification of driving style, the correlation analysis of driving features is conducted and the principal component analysis method is used to reduce the dimension of driving features.
Technical Paper

Study on Influencing Factors of Hippocampal Injury in Closed Head Impact Experiments of Rats Using Orthogonal Experimental Design Method

2023-04-11
2023-01-0001
The hippocampus plays a crucial role in brain function and is one of the important areas of concern in closed head injury. Hippocampal injury is related to a variety of factors including the strength of mechanical load, animal age, and helmet material. To investigate the order of these factors on hippocampal injury, a three-factor, three-level experimental protocol was established using the L9(34) orthogonal table. A closed head injury experiment regarding impact strength (0.3MPa, 0.5MPa, 0.7MPa), rat age (eight- week-old, ten-week-old, twelve-week-old), and helmet material (steel, plastic, rubber) were achieved by striking the rat's head with a pneumatic-driven impactor. The number of hippocampal CA3 cells was used as an evaluation indicator. The contribution of factors to the indicators and the confidence level were obtained by analysis of variance.
Technical Paper

Research on Lane-Changing Decision-Making Behavior of Intelligent Network-Connected Autonomous Vehicles

2022-12-22
2022-01-7066
With the rapid development of science and technology, the automobile industry is developing rapidly, and intelligent networking and autonomous driving have become new research hotspots. The safety and efficiency of vehicle driving has always been an important research topic in the transportation field. Due to reducing the participation of drivers, autonomous vehicles can reduce traffic accidents caused by human factors. While the development of intelligent networking can achieve information sharing between vehicles, and improve driving efficiency to a certain extent. Based on the game theory and the minimum safe distance condition, this paper establishes a lane changing decision model of intelligent network-connected autonomous vehicles, puts forward a game payoff function and analyzes the game strategy.
Journal Article

Study on the Cumulative Effect of Acute Repetitive Traumatic Brain Injury: An Experimental Animal Research

2022-03-29
2022-01-0865
Acute repetitive traumatic brain injury (rTBI) can occur in a pedestrian collision when the head hits the vehicle and the ground twice, as well as in a serial rear-ended collision in a very short period. This study established an animal model of acute rTBI to investigate the cumulative effects of repetitive brain injury under different combinations of impact levels. 117 adult male Sprague–Dawley (SD) rats (190±20g) were divided into control, single impact, and repeated impact groups, with the single impact group was divided into three subgroups of mild, moderate, and severe. And the repeated impact group was divided into nine subgroups by combining mild, moderate, and severe. The kinematic response parameters of the rat’s head were captured by a high-speed camera and acceleration sensors. Modified neurological severity score (mNSS) was performed at 6h after final injury, and the severity of injury was quantified using the abbreviated injury scale (AIS).
Technical Paper

Arrangement and Control Method of Cooperative Vehicle Platoon

2021-04-06
2021-01-0113
With the development of cellular communication technology and for the sake of reducing drag resistance, the multi-lane platoon technology will be more prosperous in the future. In this article, the cooperative vehicle platoon method on the public road is represented. The method’s architecture is mainly composed of the following parts: decision-making, path planning and control command generation. The decision-making uses the finite state machine to make decision and judgment on the cooperative lane change of vehicles, and starts to execute the lane change step when the lane change requirements are met. In terms of path planning, with the goal of ensuring comfort, the continuity of the vehicle state and no collision between vehicles, a fifth-order polynomial is used to fit every vehicle trajectory. In terms of control command generation module, a model predictive control algorithm is used to solve the multi-vehicle centralized optimization control problem.
Technical Paper

Research on Adaptive Cruise Control Strategy Considering the Disturbance of Preceding Vehicle and Multi-Objective Optimization

2021-04-06
2021-01-0338
Adaptive Cruise Control (ACC) includes three modes: cruise control, car following control, and autonomous emergency braking. Among them, the car following control mode is mainly used to manage the speed and vehicle spacing approach the preceding vehicle within the range of smooth acceleration changes. In addition, although the motion information signal of the preceding vehicle can be collected by auxiliary equipment, it is still a random variable and normally regarded as a disturbance to affect the performance of vehicle controller. Therefore, this paper proposed an ACC strategy considering the disturbance of the preceding vehicle and multi-objective optimization.
Technical Paper

Intelligent Deceleration Energy-Saving Control Strategy for Electric Vehicle

2021-04-06
2021-01-0123
In order to improve the vehicle economy of electric vehicles, this paper first analyzes the energy-saving mechanism of electric vehicles. Taking the energy consumption of the deceleration process as a starting point, this paper deeply analyzes the energy consumption of the deceleration process under several different control modes by the test data, so as to obtain two principles that should be followed in energy-saving control strategy. Then, an intelligent deceleration energy-saving control strategy by getting the forward vehicle information is developed. The overall architecture of the control strategy consists of three parts: information processing, target calculation and torque control. The first part is mainly to obtain the forward vehicle information from the perception systems, and the user's habits information from big data, and this information is processed for the next part.
Journal Article

Multi-task Learning of Semantics, Geometry and Motion for Vision-based End-to-End Self-Driving

2021-04-06
2021-01-0194
It’s hard to achieve complete self-driving using hand-crafting generalized decision-making rules, while the end-to-end self-driving system is low in complexity, does not require hand-crafting rules, and can deal with complex situations. Modular-based self-driving systems require multi-task fusion and high-precision maps, resulting in high system complexity and increased costs. In end-to-end self-driving, we usually only use camera to obtain scene status information, so image processing is very important. Numerous deep learning applications benefit from multi-task learning, as the multi-task learning can accelerate model training and improve accuracy with combine all tasks into one model, which reduces the amount of calculation and allows these systems to run in real-time. Therefore, the approach of obtaining rich scene state information based on multi-task learning is very attractive. In this paper, we propose an approach to multi-task learning for semantics, geometry and motion.
Technical Paper

Coordinated Control of Continuously Variable Transmission Speed Ratio in Engine Starting-Up for Hybrid Electric Vehicle

2021-03-16
2021-01-5003
In order to improve the mode switching performance of parallel hybrid electric vehicles (PHEV) and make better use of the dynamics of the vehicle, this paper proposes a three-stage control method for the start-up mode of start-up, speed synchronization, and clutch slip based on the response characteristics of actual vehicle components and the complex working conditions of the actual road. In the speed synchronization phase, a coordinated control method of “engine speed active following + continuously variable transmission (CVT) speed ratio motor speed limiting” is proposed. The real vehicle test results show that the engine starting-up coordinated control method can significantly accelerate the speed synchronization and shorten the starting-up mode duration during the rapid acceleration, so that the vehicle’s power performance can be well played and the ride comfort can be effectively guaranteed.
Technical Paper

Novel Method for Identifying and Assessing Rattle Noise on Vehicle Seatbelt Retractors Based on Time-Frequency Analysis

2021-03-04
2021-01-5015
Rattle noise as an error state of cabin noise in vehicles has become an important topic both in research and application. In engineering, the commonly used method to evaluate and detect rattle issues is greatly dependent on experts’ personal auditory perception. People judge a noise simply as “loud” and “not loud” or “qualified” and “unqualified.” A more objective method needs to be developed to eliminate the randomness of subjective evaluation. In this paper, a rig test of the seatbelt retractors was performed, and simulated random excitation was applied to the test samples through the MB vibration test bench in a semi-anechoic chamber. The rattle noises were recorded by HEAD SQuadriga II. Various methods were employed to identify and assess the severity of rattle noise on seatbelt retractors.
Technical Paper

Temperature Compensation Control Strategy of Creep Mode for Hydraulic Hub-Motor Drive Vehicle

2020-06-09
2020-01-5059
Based on traditional heavy commercial vehicles, a hydraulic hub-motor drive vehicle (HHMDV) is equipped with a set of hydraulic hub-motor auxiliary system (HHMAS) to improve the traction performance and adaptability under complex conditions. In the case of low-speed operation or mechanical transmission failure, the creep mode (CM) can be used to drive the vehicle. Aiming at a common hydraulic system problem that flow loss increases due to temperature variation, a temperature compensation control strategy of the CM is proposed in this paper. By analyzing the speed regulation characteristics of the closed loop of the system in the CM, combined with the efficiency of the hydraulic variable pump (HP) and the hydraulic quantitative motor (HM), and aiming at adjusting the engine work in the optimal curve of the engine, the temperature compensation factor is introduced to control the HP displacement with hydraulic stepless speed regulation.
Technical Paper

Simulation of Curved Road Collision Prevention Warning System of Automobile Based on V2X

2020-04-14
2020-01-0707
The high popularity of automobiles has led to frequent collisions. According to the latest statistics of the United Nations, about 1.25 million people worldwide die from road traffic accidents each year. In order to improve the safety of vehicles in driving, the active safety system has become a research hotspot of various car companies and research institutions around the world. Among them, the more mature and popular active security system are Forward Collision Warning(FCW) and Autonomous Emergency Braking(AEB). However, the current active safety system is based on traditional sensors such as radar and camera. Therefore, the system itself has many limitations due to the shortage of traditional sensors. Compared to traditional sensors, Vehicle to Everything (V2X) technology has the advantages of richer vehicle parameter information, no perceived blind spots, dynamic prediction of dangerous vehicle status, and no occlusion restriction.
X